-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAlgorithms1.py
131 lines (112 loc) · 3.37 KB
/
Algorithms1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time: 2021/3/13 0013 23:03
# @Author&Email: COLFLIP&[email protected]
# @File: Algorithms1.py
# @Software: PyCharm
# ---------------------------------------------
# # Algorithms1:unnormalized Spectral Clustering
# kmeans
# ---------------------------------------------
import matplotlib.pyplot as plt
import numpy as np
from sklearn import metrics
from sklearn.cluster import KMeans
def getDistanceMatrix(data):
"""
获取距离矩阵
:param data: 样本集合
:return: 距离矩阵
"""
n = len(data) # 样本总数
dist_matrix = np.zeros((n, n)) # 初始化矩阵为n×n的全0矩阵
for i in range(n):
for j in range(i + 1, n):
dist = np.sqrt(np.power(data[i] - data[j], 2).sum())
dist_matrix[i][j] = dist_matrix[j][i] = dist
return dist_matrix
def getAdjacencyMatrix(data, k):
"""
获得邻接矩阵AdjacencyMatrix W
:param data: 样本集合
:param k : K参数
:return: W
"""
n = len(data)
dist_matrix = getDistanceMatrix(data)
W = np.zeros((n, n))
for idx, item in enumerate(dist_matrix):
idx_array = np.argsort(item) # 每一行距离列表进行排序,得到对应的索引列表
W[idx][idx_array[1:k + 1]] = 1
transpW = np.transpose(W)
return (W + transpW) / 2
def getDegreeMatrix(W):
"""
获得度矩阵Degree
:param W: 邻接矩阵
:return: D
"""
D = np.diag(sum(W))
return D
def getLaplacianMatrix(D, W):
"""
获得拉普拉斯矩阵
:param W: 邻接矩阵
:param D: 度矩阵
:return: L
"""
return D - W
def getEigen(L, cluster_num):
"""
获得拉普拉斯矩阵的特征矩阵
:param L:
:param cluter_num: 聚类数目
:return:
"""
eigval, eigvec = np.linalg.eig(L)
ix = np.argsort(eigval)[0:cluster_num]
return eigvec[:, ix]
def plotRes(data, clusterResult, clusterNum):
"""
结果可似化
:param data: 样本集
:param clusterResult: 聚类结果
:param clusterNum: 聚类个数
:return:
"""
n = len(data)
scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'LightGrey']
for i in range(clusterNum):
color = scatterColors[i % len(scatterColors)]
x1 = [];
y1 = []
for j in range(n):
if clusterResult[j] == i:
x1.append(data[j, 0])
y1.append(data[j, 1])
plt.scatter(x1, y1, c=color, marker='+')
plt.title("Algorithms1")
plt.show()
def USC(data, cluster_num, k):
W = getAdjacencyMatrix(data, k)
D = getDegreeMatrix(W)
L = getLaplacianMatrix(D, W)
# print(L)
eigvec = getEigen(L, cluster_num)
clf = KMeans(n_clusters=cluster_num)
s = clf.fit(eigvec) # 聚类
label = s.labels_
return label
cluster_num = 7
knn_k = 5
filename = 'Aggregation_cluster=7.txt'
data = np.loadtxt(filename, delimiter='\t')
data = data[0:-1] # 除了最后一列 最后一列为标签列
data = np.array(data)
# plt.scatter(data[:, 0], data[:, 1], marker='+')
# plt.show()
label = USC(data, cluster_num, knn_k)
plotRes(data, label, cluster_num)
print(metrics.silhouette_score(data, label)) # 轮廓系数评价
print(metrics.davies_bouldin_score(data, label)) # 戴维森堡丁指数(DBI)评价
print(metrics.calinski_harabasz_score(data, label)) # CH指标评价