-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaveraged_sw_hw.py
251 lines (201 loc) · 7.25 KB
/
averaged_sw_hw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#get command arguments
import argparse
parser = argparse.ArgumentParser(description='Williamson 5 testcase for averaged propagator.')
parser.add_argument('--ref_level', type=int, default=3, help='Refinement level of icosahedral grid. Default 3.')
parser.add_argument('--tmax', type=float, default=360, help='Final time in hours. Default 24x15=360.')
parser.add_argument('--dumpt', type=float, default=6, help='Dump time in hours. Default 6.')
parser.add_argument('--dt', type=float, default=3, help='Timestep in hours. Default 3.')
parser.add_argument('--rho', type=float, default=1, help='Averaging window width as a multiple of dt. Default 1.')
parser.add_argument('--linear', action='store_false', dest='nonlinear', help='Run linear model if present, otherwise run nonlinear model')
parser.add_argument('--Mbar', action='store_true', dest='get_Mbar', help='Compute suitable Mbar, print it and exit.')
parser.add_argument('--filter', action='store_true', help='Use a filter in the averaging exponential')
parser.add_argument('--filter_val', type=float, default=0.75, help='Cut-off for filter')
parser.add_argument('--ppp', type=float, default=3, help='Points per time-period for averaging.')
parser.add_argument('--filename', type=str, default='w2hw')
args = parser.parse_known_args()
args = args[0]
filter = args.filter
filter_val = args.filter_val
#checking cheby parameters based on ref_level
ref_level = args.ref_level
eigs = [0.003465, 0.007274, 0.014955] #maximum frequency
from math import pi
min_time_period = 2*pi/eigs[ref_level-3]
hours = args.dt
dt = 60*60*hours
rho = args.rho #averaging window is rho*dt
L = eigs[ref_level-3]*dt*rho
ppp = args.ppp #points per (minimum) time period
# rho*dt/min_time_period = number of min_time_periods that fit in rho*dt
# we want at least ppp times this number of sample points
from math import ceil
Mbar = ceil(ppp*rho*dt*eigs[ref_level-3]/2/pi)
print(args)
if args.get_Mbar:
print("Mbar="+str(Mbar))
import sys; sys.exit()
from cheby_exp import *
from firedrake import *
import numpy as np
from firedrake.petsc import PETSc
print = PETSc.Sys.Print
assert Mbar==COMM_WORLD.size, str(Mbar)+' '+str(COMM_WORLD.size)
print('averaging window', rho*dt, 'sample width', rho*dt/Mbar)
print('Mbar', Mbar, 'samples per min time period', min_time_period/(rho*dt/Mbar))
#ensemble communicator
ensemble = Ensemble(COMM_WORLD, 1)
#some domain, parameters and FS setup
R0 = 6371220.
H = Constant(5960.)
mesh = IcosahedralSphereMesh(radius=R0,
refinement_level=ref_level, degree=3,
comm = ensemble.comm)
cx = SpatialCoordinate(mesh)
mesh.init_cell_orientations(cx)
cx, cy, cz = SpatialCoordinate(mesh)
outward_normals = CellNormal(mesh)
perp = lambda u: cross(outward_normals, u)
V1 = FunctionSpace(mesh, "BDM", 2)
V2 = FunctionSpace(mesh, "DG", 1)
W = MixedFunctionSpace((V1, V2))
u, eta = TrialFunctions(W)
v, phi = TestFunctions(W)
Omega = Constant(7.292e-5) # rotation rate
f = 2*Omega*cz/Constant(R0) # Coriolis parameter
g = Constant(9.8) # Gravitational constant
b = Function(V2, name="Topography")
c = sqrt(g*H)
#Set up the exponential operator
operator_in = Function(W)
u_in, eta_in = split(operator_in)
#D = eta + b
u, eta = TrialFunctions(W)
v, phi = TestFunctions(W)
F = (
- inner(f*perp(u_in),v)*dx
+g*eta_in*div(v)*dx
- H*div(u_in)*phi*dx
)
a = inner(v,u)*dx + phi*eta*dx
operator_out = Function(W)
params = {
'ksp_type': 'preonly',
'pc_type': 'fieldsplit',
'fieldsplit_0_ksp_type':'cg',
'fieldsplit_0_pc_type':'bjacobi',
'fieldsplit_0_sub_pc_type':'ilu',
'fieldsplit_1_ksp_type':'preonly',
'fieldsplit_1_pc_type':'bjacobi',
'fieldsplit_1_sub_pc_type':'ilu'
}
Prob = LinearVariationalProblem(a, F, operator_out)
OperatorSolver = LinearVariationalSolver(Prob, solver_parameters=params)
ncheb = 10000
cheby = cheby_exp(OperatorSolver, operator_in, operator_out,
ncheb, tol=1.0e-6, L=L, filter=filter, filter_val=filter_val)
cheby2 = cheby_exp(OperatorSolver, operator_in, operator_out,
ncheb, tol=1.0e-6, L=L, filter=False)
#solvers for slow part
USlow_in = Function(W) #value at previous timestep
USlow_out = Function(W) #value at RK stage
u0, eta0 = split(USlow_in)
#RHS for Forward Euler step
gradperp = lambda f: perp(grad(f))
n = FacetNormal(mesh)
Upwind = 0.5 * (sign(dot(u0, n)) + 1)
both = lambda u: 2*avg(u)
K = 0.5*inner(u0, u0)
uup = 0.5 * (dot(u0, n) + abs(dot(u0, n)))
dT = Constant(dt)
vector_invariant = True
if vector_invariant:
L = (
dT*inner(perp(grad(inner(v, perp(u0)))), u0)*dx
- dT*inner(both(perp(n)*inner(v, perp(u0))),
both(Upwind*u0))*dS
+ dT*div(v)*K*dx
+ dT*inner(grad(phi), u0*(eta0-b))*dx
- dT*jump(phi)*(uup('+')*(eta0('+')-b('+'))
- uup('-')*(eta0('-') - b('-')))*dS
)
else:
L = (
dT*inner(div(outer(u0, v)), u0)*dx
- dT*inner(both(inner(n, u0)*v), both(Upwind*u0))*dS
+ dT*inner(grad(phi), u0*(eta0-b))*dx
- dT*jump(phi)*(uup('+')*(eta0('+')-b('+'))
- uup('-')*(eta0('-') - b('-')))*dS
)
#with topography, D = H + eta - b
SlowProb = LinearVariationalProblem(a, L, USlow_out)
SlowSolver = LinearVariationalSolver(SlowProb,
solver_parameters = params)
t = 0.
tmax = 60.*60.*args.tmax
dumpt = args.dumpt*60.*60.
tdump = 0.
svals = np.arange(0.5, Mbar)/Mbar #tvals goes from -rho*dt/2 to rho*dt/2
weights = np.exp(-1.0/svals/(1.0-svals))
weights = weights/np.sum(weights)
print(weights)
svals -= 0.5
rank = ensemble.ensemble_comm.rank
expt = rho*dt*svals[rank]
wt = weights[rank]
print(wt,"weight",expt)
x = SpatialCoordinate(mesh)
u_0 = 20.0 # maximum amplitude of the zonal wind [m/s]
u_max = Constant(u_0)
u_expr = as_vector([-u_max*x[1]/R0, u_max*x[0]/R0, 0.0])
eta_expr = - ((R0 * Omega * u_max + u_max*u_max/2.0)*(x[2]*x[2]/(R0*R0)))/g
un = Function(V1, name="Velocity").project(u_expr)
etan = Function(V2, name="Elevation").project(eta_expr)
# Topography
rl = pi/9.0
lambda_x = atan_2(x[1]/R0, x[0]/R0)
lambda_c = -pi/2.0
phi_x = asin(x[2]/R0)
phi_c = pi/6.0
minarg = Min(pow(rl, 2), pow(phi_x - phi_c, 2) + pow(lambda_x - lambda_c, 2))
bexpr = 2000.0*(1 - sqrt(minarg)/rl)
b.interpolate(bexpr)
un1 = Function(V1)
etan1 = Function(V1)
U = Function(W)
eU = Function(W)
DU = Function(W)
V = Function(W)
U_u, U_eta = U.split()
U_u.assign(un)
U_eta.assign(etan)
name = args.filename
if rank==0:
file_sw = File(name+'.pvd', comm=ensemble.comm)
file_sw.write(un, etan, b)
nonlinear = args.nonlinear
print ('tmax', tmax, 'dt', dt)
while t < tmax + 0.5*dt:
print(t)
t += dt
tdump += dt
if nonlinear:
cheby.apply(U, USlow_in, expt)
SlowSolver.solve()
cheby.apply(USlow_out, DU, -expt)
DU *= wt
ensemble.allreduce(DU, V)
V.assign(U + 0.5*V)
cheby.apply(V, USlow_in, expt)
SlowSolver.solve()
cheby.apply(USlow_out, DU, -expt)
DU *= wt
ensemble.allreduce(DU, V)
V.assign(U + V)
#transform forwards to next timestep
cheby2.apply(V, U, dt)
if rank == 0:
if tdump > dumpt - dt*0.5:
un.assign(U_u)
etan.assign(U_eta)
file_sw.write(un, etan, b)
tdump -= dumpt