-
Notifications
You must be signed in to change notification settings - Fork 78
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
seuratUMAP fails, can't find reductions #774
Comments
Hello, I ran the following code loading in the PBMC3K dataset that I use as testing: library(singleCellTK)
library(Seurat)
library(TENxPBMCData)
# Load pbmc3k data
sceObj <- TENxPBMCData(dataset = "pbmc3k")
# Run QC
sceObj <- runCellQC(sceObj)
sceObj = runNormalization(
inSCE = sceObj,
useAssay = "counts",
outAssayName = "logcounts",
normalizationMethod = "LogNormalize",
scale = F,
verbose = T
)
sceObj = runSeuratFindHVG(
inSCE = sceObj,
useAssay = "logcounts",
method = "vst",
hvgNumber = 2000,
createFeatureSubset = "hvf"
)
sceObj = runDimReduce(
inSCE = sceObj,
method = "seuratPCA",
reducedDimName = "PCA",
useAssay = "logcounts",
scale = T,
seed = 789,
nComponents = 30
)
# runSeuratFindClusters
sceObj = runScranSNN(
inSCE = sceObj,
useReducedDim = "PCA",
clusterName = "cluster",
k = 14,
nComp = 30,
algorithm = "louvain",
seed = 789
)
sceObj = runDimReduce(
inSCE = sceObj,
method = "seuratUMAP",
useReducedDim = "PCA",
useFeatureSubset = "hvf",
reducedDimName = "UMAP",
scale = F,
seed = 789,
nComponents = 2
) I receive the following result: > library(singleCellTK)
> library(Seurat)
>
> # Load pbmc3k data
> sceObj <- TENxPBMCData(dataset = "pbmc3k")
>
> # Run QC
> sceObj <- runCellQC(sceObj)
>
> {...}
>
> sceObj = runNormalization(
+ inSCE = sceObj,
+ useAssay = "counts",
+ outAssayName = "logcounts",
+ normalizationMethod = "LogNormalize",
+ scale = F,
+ verbose = T
+ )
Normalizing layer: counts
Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Normalization performed using LogNormalize method.
>
> sceObj = runSeuratFindHVG(
+ inSCE = sceObj,
+ useAssay = "logcounts",
+ method = "vst",
+ hvgNumber = 2000,
+ createFeatureSubset = "hvf"
+ )
Finding variable features for layer counts
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Wed Dec 11 12:04:14 2024 ... Feature subset variable 'hvf' created.
>
> sceObj = runDimReduce(
+ inSCE = sceObj,
+ method = "seuratPCA",
+ reducedDimName = "PCA",
+ useAssay = "logcounts",
+ scale = T,
+ seed = 789,
+ nComponents = 30
+ )
Wed Dec 11 12:04:14 2024 ... Computing Seurat PCA.
Centering and scaling data matrix
|================================================================================| 100%
PC_ 1
Positive: ENSG00000143947, ENSG00000213402, ENSG00000145425, ENSG00000227507, ENSG00000168028, ENSG00000167286, ENSG00000008517, ENSG00000198851, ENSG00000213741, ENSG00000111716
ENSG00000121966, ENSG00000205246, ENSG00000168685, ENSG00000173762, ENSG00000182866, ENSG00000104964, ENSG00000133639, ENSG00000089157, ENSG00000181163, ENSG00000116824
ENSG00000108654, ENSG00000156976, ENSG00000105373, ENSG00000110848, ENSG00000172183, ENSG00000147168, ENSG00000114942, ENSG00000196405, ENSG00000101608, ENSG00000147604
Negative: ENSG00000101439, ENSG00000011600, ENSG00000163220, ENSG00000204482, ENSG00000087086, ENSG00000090382, ENSG00000204472, ENSG00000085265, ENSG00000167996, ENSG00000158869
ENSG00000025708, ENSG00000100097, ENSG00000197766, ENSG00000143546, ENSG00000100079, ENSG00000129226, ENSG00000163131, ENSG00000197249, ENSG00000130066, ENSG00000066336
ENSG00000197746, ENSG00000126759, ENSG00000142089, ENSG00000163191, ENSG00000216490, ENSG00000119655, ENSG00000103187, ENSG00000030582, ENSG00000131981, ENSG00000182287
PC_ 2
Positive: ENSG00000105374, ENSG00000145649, ENSG00000077984, ENSG00000180644, ENSG00000100453, ENSG00000172543, ENSG00000137441, ENSG00000115523, ENSG00000161570, ENSG00000197540
ENSG00000159674, ENSG00000100450, ENSG00000126264, ENSG00000129277, ENSG00000198821, ENSG00000196154, ENSG00000008517, ENSG00000134539, ENSG00000122862, ENSG00000143185
ENSG00000135046, ENSG00000169583, ENSG00000133321, ENSG00000203747, ENSG00000108518, ENSG00000173762, ENSG00000196139, ENSG00000160255, ENSG00000171476, ENSG00000180739
Negative: ENSG00000105369, ENSG00000156738, ENSG00000196735, ENSG00000179344, ENSG00000100721, ENSG00000007312, ENSG00000204287, ENSG00000247982, ENSG00000128218, ENSG00000019582
ENSG00000196126, ENSG00000223865, ENSG00000237541, ENSG00000231389, ENSG00000198502, ENSG00000104921, ENSG00000204257, ENSG00000153064, ENSG00000104894, ENSG00000242574
ENSG00000106537, ENSG00000132185, ENSG00000122986, ENSG00000241106, ENSG00000168734, ENSG00000176533, ENSG00000145088, ENSG00000137101, ENSG00000269404, ENSG00000112799
PC_ 3
Positive: ENSG00000100453, ENSG00000137441, ENSG00000180644, ENSG00000105374, ENSG00000115523, ENSG00000077984, ENSG00000159674, ENSG00000145649, ENSG00000007312, ENSG00000105369
ENSG00000129277, ENSG00000196735, ENSG00000156738, ENSG00000100450, ENSG00000019582, ENSG00000169583, ENSG00000223865, ENSG00000134539, ENSG00000100721, ENSG00000179344
ENSG00000143185, ENSG00000196139, ENSG00000231389, ENSG00000075234, ENSG00000203747, ENSG00000150687, ENSG00000196126, ENSG00000247982, ENSG00000172543, ENSG00000180739
Negative: ENSG00000111716, ENSG00000167286, ENSG00000026025, ENSG00000168685, ENSG00000171223, ENSG00000241343, ENSG00000170345, ENSG00000142546, ENSG00000198851, ENSG00000213741
ENSG00000089157, ENSG00000172809, ENSG00000102760, ENSG00000152518, ENSG00000172005, ENSG00000165272, ENSG00000126353, ENSG00000129824, ENSG00000082074, ENSG00000133872
ENSG00000227507, ENSG00000008517, ENSG00000116251, ENSG00000148908, ENSG00000196683, ENSG00000171858, ENSG00000147604, ENSG00000116824, ENSG00000204387, ENSG00000181163
PC_ 4
Positive: ENSG00000163736, ENSG00000163737, ENSG00000168497, ENSG00000127920, ENSG00000113140, ENSG00000154146, ENSG00000180573, ENSG00000169704, ENSG00000150681, ENSG00000101162
ENSG00000120885, ENSG00000236304, ENSG00000010278, ENSG00000005961, ENSG00000171611, ENSG00000104267, ENSG00000088726, ENSG00000111644, ENSG00000108960, ENSG00000161911
ENSG00000124491, ENSG00000184702, ENSG00000101856, ENSG00000176783, ENSG00000101335, ENSG00000145335, ENSG00000095303, ENSG00000102804, ENSG00000166091, ENSG00000204424
Negative: ENSG00000168028, ENSG00000051523, ENSG00000147604, ENSG00000231389, ENSG00000143947, ENSG00000223865, ENSG00000089157, ENSG00000143119, ENSG00000198502, ENSG00000196126
ENSG00000145287, ENSG00000019582, ENSG00000104894, ENSG00000145425, ENSG00000128340, ENSG00000137441, ENSG00000106153, ENSG00000196735, ENSG00000105374, ENSG00000115523
ENSG00000169442, ENSG00000179344, ENSG00000169100, ENSG00000180644, ENSG00000185201, ENSG00000135390, ENSG00000114942, ENSG00000007312, ENSG00000102879, ENSG00000077984
PC_ 5
Positive: ENSG00000143546, ENSG00000162444, ENSG00000163221, ENSG00000163220, ENSG00000110203, ENSG00000170458, ENSG00000100079, ENSG00000110077, ENSG00000119535, ENSG00000166523
ENSG00000090382, ENSG00000169429, ENSG00000183019, ENSG00000221869, ENSG00000130522, ENSG00000085265, ENSG00000006075, ENSG00000150337, ENSG00000141505, ENSG00000011600
ENSG00000126883, ENSG00000090013, ENSG00000104918, ENSG00000124731, ENSG00000084207, ENSG00000226091, ENSG00000129277, ENSG00000169413, ENSG00000135929, ENSG00000213903
Negative: ENSG00000185201, ENSG00000026297, ENSG00000143933, ENSG00000184009, ENSG00000150991, ENSG00000070756, ENSG00000133872, ENSG00000143119, ENSG00000109971, ENSG00000169442
ENSG00000155366, ENSG00000101608, ENSG00000123416, ENSG00000134333, ENSG00000171223, ENSG00000065978, ENSG00000102879, ENSG00000181163, ENSG00000168028, ENSG00000136156
ENSG00000118680, ENSG00000187109, ENSG00000172757, ENSG00000203747, ENSG00000143549, ENSG00000122566, ENSG00000089327, ENSG00000142168, ENSG00000189043, ENSG00000125534
>
> # runSeuratFindClusters
> sceObj = runScranSNN(
+ inSCE = sceObj,
+ useReducedDim = "PCA",
+ clusterName = "cluster",
+ k = 14,
+ nComp = 30,
+ algorithm = "louvain",
+ seed = 789
+ )
Wed Dec 11 12:04:17 2024 ... Running 'scran SNN clustering' with 'louvain' algorithm
Wed Dec 11 12:04:18 2024 ... Identified 9 clusters
>
> sceObj = runDimReduce(
+ inSCE = sceObj,
+ method = "seuratUMAP",
+ useReducedDim = "PCA",
+ useFeatureSubset = "hvf",
+ reducedDimName = "UMAP",
+ scale = F,
+ seed = 789,
+ nComponents = 2
+ )
Wed Dec 11 12:04:19 2024 ... Computing Seurat UMAP.
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
12:04:20 UMAP embedding parameters a = 0.9922 b = 1.112
12:04:20 Read 2700 rows and found 10 numeric columns
12:04:20 Using Annoy for neighbor search, n_neighbors = 30
12:04:20 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
12:04:20 Writing NN index file to temp file C:\Users\Cortana\AppData\Local\Temp\Rtmpu4piOF\file1f6c05ad71814
12:04:20 Searching Annoy index using 1 thread, search_k = 3000
12:04:21 Annoy recall = 100%
12:04:21 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
12:04:23 Initializing from normalized Laplacian + noise (using RSpectra)
12:04:23 Commencing optimization for 500 epochs, with 107660 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
12:04:29 Optimization finished Could you supply the data that you used and which versions of sctk and Seurat? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, I am getting this result. Setting method to
"scaterUMAP"
works.The text was updated successfully, but these errors were encountered: