-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.R
440 lines (401 loc) · 17.9 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
library(shiny)
library(jsonlite)
library(plotly)
library(shinydashboard)
library(shinyjs)
jsCode <- readChar('js/main.js', file.info('js/main.js')$size)
# js code for shinyjs functions
shinyjsCode <- readChar('js/shinyjs.js', file.info('js/shinyjs.js')$size)
# bootstrap modal
modal <- tags$div(class="modal fade", id="youtubeid", tabindex="-1", role="dialog", `aria-labelledby`="myModalLabel",
tags$div(class="modal-dialog", role="document",
tags$div(class="modal-content",
tags$div(class="modal-header",
tags$button(type="button", class="close", `data-dismiss`="modal", `aria-label`="Close"),
tags$h4(class="modal-title", id="myModalLabel", "Progress window")
),
tags$div(class="modal-body",
tags$div(class = "input-group",
tags$input(id = "idinput", type="text", class="form-control", placeholder="Enter YouTube ID to estimate its HIP model"),
tags$span(class="input-group-btn", tags$button(id = "youtubeidclick", type="button", class="btn btn-primary",
`data-loading-text`="<i class='fa fa-spinner fa-spin '></i> Processing",
"Add"))
),
tags$div(id = "progressContainer", class="container-fluid") ),
tags$div(class="modal-footer",
tags$button(type="button", id = "closeButton", class="btn btn-default", `data-dismiss`="modal", "Close"))
)
)
)
############################## start of the main program ##############################
# loading libraries and datasets
## load all the data that we need
load('data/init.dat', envir = .GlobalEnv)
source("scripts/functions-predictive-power.R")
source("modules/page-module.R")
source("scripts/util.R")
load("data/new-videos.dat")
load("data/datasets.dat")
## clear absent videos in datasets
if (length(datasets) > 5) {
for (i in 6:length(datasets)) {
if (length(datasets[i][[1]]) > 0) {
for (idNo in 1:length(datasets[i][[1]])) {
if (!(datasets[i][[1]][idNo] %in% newVideoFinalData$YoutubeID)) {
datasets[i][[1]] <- datasets[i][[1]][-idNo]
save(datasets, file = "data/datasets.dat")
}
}
}
}
}
## create progress files if absent
if (!file.exists('data/videos-progress.dat')) {
videosProgress <- data.frame(matrix(data = NA, nrow = 0, ncol = 3))
names(videosProgress) <- c("YoutubeID", "progress", "whichDataset")
save(videosProgress, file = 'data/videos-progress.dat')
}
startTime <- file.info("data/new-videos.dat")$mtime
startTimeProgress <- file.info('data/videos-progress.dat')$mtime
## create the folder data/crawled
if (!file.exists("data/crawled")){
dir.create("data/crawled")
}
artists_1 <- c("JustinBieberVEVO", "RihannaVEVO", "KatyPerryVEVO", "TaylorSwiftVEVO",
"EminemVEVO", "shakiraVEVO", "David Guetta", "EnriqueIglesiasVEVO", "OneDirectionVEVO", "Maroon5VEVO")
artists_2 <- c("SamSmithWorldVEVO", "AerosmithVEVO", "DisneyMusicVEVO", "kanygarciaVEVO",
"Maroon5VEVO", "TiestoVEVO", "5SOSVEVO", "michaeljacksonVEVO", "PorterRobinsonVEVO", "RickyMartinVEVO")
artists <- artists_2
############################ for parallel ###########################
workerNo <- trunc(detectCores() / 8) + 1
nodes <- list()
for (i in 1:workerNo) {
nodes[[i]] <- makePSOCKcluster("localhost")
}
nodesInUse <- rep(NA, workerNo)
waitingQueue <- character()
waitingDatasetQueue <- numeric()
tmpTime <- round(as.numeric(Sys.time()))
getSemaphore <- function() {
system(paste('lockfile -1 /tmp/lock', '-', tmpTime, sep = ''))
}
releaseSemaphore <- function() {
system(paste('rm -f /tmp/lock', '-', tmpTime, sep = ''))
}
# check if command exists
if (system('command -v lockfile >/dev/null 2>&1 || { echo >&2 "Lockfile is required but it\'s not installed. On ubuntu use \'sudo apt install procmail\'. Aborting."; exit 1; }')) {
quit(status = 1)
}
############################## ui part ##############################
ui <- dashboardPage(title = 'HIP-DEMO',
dashboardHeader(title = "YouTube"),
dashboardSidebar(
sidebarMenuOutput("menu")
),
dashboardBody(
tags$style(HTML('.box.box-solid.box-primary>.box-header {color: #fff;background: #222d32;}
.box.box-solid.box-primary {border: 1px solid #222d32;}
.box.box-solid.box-warning>.box-header {color: #fff;background: gray;}
.box.box-solid.box-warning {border: 1px solid gray}')),
HTML(jsCode),
useShinyjs(),
extendShinyjs(text = shinyjsCode, functions = c("progress", "emptyVideoDataSetCover",
"removeCover", "completeOneVideo", "showWarning",
"createProgressElement", "tablistener", "removeOneVideo")),
modal,
uiOutput("content")
),
skin = "black"
)
############################## server part ##############################
server <- function(input, output, session) {
# Menu output
output$menu <- renderMenu({
sidebarMenu(.list = {
# items in left sidebar
menuLists <- list()
i <- 0
for (dataset in names(datasets)) {
menuLists <- list(menuLists, menuItem(dataset, tabName = paste(i, sep = "")))
i <- i + 1
}
menuLists
})
})
# inputs from JS
sidebarBug <- reactive({
input$resize
})
windowHeight <- reactive({
input$height
})
# loading up datasets
constructSelectedData <- function(selectedData, selectedPercentiles) {
# Get percentiles
selectedData$totalViewcount_perc <- selectedPercentiles$views * 30
selectedData$`Shares %` <- selectedPercentiles$shares
selectedData$text <- paste("YoutubeID:", selectedData$YoutubeID, "<br>Author:", selectedData$channelTitle,
"<br>Title:", selectedData$title, "<br>TotalViewcount percentile(size):",
selectedData$totalViewcount_perc / 30, "<br>Shares percentile:",
selectedData$`Shares %`)
selectedData
}
loadingFromJSON <- function(datasetNo) {
load('data/datasets.dat')
selectedYoutubeID <- array(datasets[datasetNo])[[1]]
if (datasetNo <= 5) {
selectedData <- data[data$YoutubeID %in% selectedYoutubeID, ]
selectedPercentiles <- percentiles[percentiles$YoutubeID %in% selectedYoutubeID, ]
return(constructSelectedData(selectedData, selectedPercentiles))
} else {
getSemaphore()
load("data/new-videos.dat")
releaseSemaphore()
selectedData <- newVideoFinalData[newVideoFinalData$YoutubeID %in% selectedYoutubeID, ]
return(selectedData)
}
}
# updating ui
updateUI <- function(videosFound = NULL) {
output$content <- renderUI({
if (input$chosentab == "4") {
return(normalPageUI(input$chosentab, artists = TRUE))
} else {
return(normalPageUI(input$chosentab))
}
})
if (input$chosentab == "4") {
callModule(normalPage, id = input$chosentab, selectedData = loadingFromJSON(as.numeric(input$chosentab) + 1),
data = data, height = windowHeight, sidebarBug = sidebarBug, artists = TRUE, videosFound = videosFound)
} else if (as.numeric(input$chosentab) + 1 <= 5) {
callModule(normalPage, id = input$chosentab, selectedData = loadingFromJSON(as.numeric(input$chosentab) + 1),
data = data, height = windowHeight, sidebarBug = sidebarBug, videosFound = videosFound)
} else {
# if dataset is empty
if (length(datasets[as.numeric(input$chosentab) + 1][[1]]) == 0) {
js$emptyVideoDataSetCover()
return()
}
getSemaphore()
load('data/new-videos.dat')
releaseSemaphore()
callModule(normalPage, id = input$chosentab, selectedData = loadingFromJSON(as.numeric(input$chosentab) + 1),
data = newVideoFinalData, height = windowHeight, sidebarBug = sidebarBug, videosFound = videosFound)
}
}
# observing tab changing events
observeEvent(input$chosentab, {
updateUI()
})
# observing on add video button created event
observeEvent(input$onAddVideoButtonCreated, {
getSemaphore()
load('data/videos-progress.dat')
releaseSemaphore()
if (nrow(videosProgress) > 0) {
startTimeProgress <<- 0
}
for (i in videosProgress$YoutubeID) {
crawledDataPath <- paste('./data/crawled/', i, '.json', sep = '')
crawledData <- fromJSON(crawledDataPath)
js$createProgressElement(i, crawledData$snippet$title, crawledData$snippet$channelTitle, crawledData$snippet$description)
}
})
################# progress updater and video updater ##################
progressUpdate <- reactiveTimer(2000)
observe({
progressUpdate()
if (file.info('data/videos-progress.dat')$mtime > startTimeProgress) {
startTimeProgress <<- file.info('data/videos-progress.dat')$mtime
getSemaphore()
load('data/videos-progress.dat')
releaseSemaphore()
for (i in videosProgress$YoutubeID) {
crawledDataPath <- paste('./data/crawled/', i, '.json', sep = '')
crawledData <- fromJSON(crawledDataPath)
if (videosProgress[videosProgress$YoutubeID == i,]$progress == 100) {
print(videosProgress)
js$progress(videosProgress[videosProgress$YoutubeID == i,]$YoutubeID, 100)
# Add new video into corresponding dataset
no <- as.numeric(videosProgress[videosProgress$YoutubeID == i, ]$whichDataset)
datasets[no][[1]][length(datasets[no][[1]]) + 1] <<- i
save(datasets, file = 'data/datasets.dat')
print(paste('adding to dataset ', no))
print("Removing one from videosProgress")
videosProgress <- videosProgress[!(videosProgress$YoutubeID == i), ]
save(videosProgress, file = 'data/videos-progress.dat')
js$completeOneVideo(i)
print("test here in changing")
startTime <<- file.info('data/new-videos.dat')$mtime
nodesInUse[nodesInUse %in% i] <<- NA
if (as.numeric(input$chosentab) + 1 == no && length(datasets[as.numeric(input$chosentab) + 1][[1]]) > 0) {
js$removeCover()
getSemaphore()
load('data/new-videos.dat')
releaseSemaphore()
callModule(normalPage, id = input$chosentab, selectedData = loadingFromJSON(as.numeric(input$chosentab) + 1), data = newVideoFinalData,
height = windowHeight, sidebarBug = sidebarBug, selectedVideo = i)
}
} else {
js$progress(videosProgress[videosProgress$YoutubeID == i,]$YoutubeID, videosProgress[videosProgress$YoutubeID == i,]$progress)
}
}
}
# Checking status, start new worker
if (NA %in% nodesInUse && length(waitingQueue) > 0) {
index <- match(TRUE, nodesInUse %in% NA)
id <- waitingQueue[1]
no <- waitingDatasetQueue[1]
waitingQueue <<- waitingQueue[-1]
waitingDatasetQueue <<- waitingDatasetQueue[-1]
clusterExport(nodes[[index]], varlist = c("fromJSON", "constructingDataFromCrawledData", "dataFitting",
"constructingFinalData", "makeCluster", "clusterExport", "parLapplyLB",
"stopCluster", "predict.gather_regularization_results", "error_function_gradient",
"error_function", "generate_simulated_data", "predict_theoretical_lambda", "grad_lambda",
"predict.get_folder", "predict.get_file_names", "predict.train_regularizer",
".check_fix_mus_ext_infl", ".predict.construct_external_info",
".predict.fit_videoinfo.construct_work_params", ".correct_names", "fit_series",
"detectCores", "get_endogenous_response", ".get_n", "get_n"))
parallel:::sendCall(nodes[[index]][[1]], fun = startNewVideoWorker, args = list(id, popularity_scale, getSemaphore, releaseSemaphore, no))
nodesInUse[index] <<- id
}
})
autoUpdate <- reactiveTimer(10000)
observe({
autoUpdate()
if (file.info('data/new-videos.dat')$mtime > startTime) {
print("test here in mtime")
startTime <<- file.info('data/new-videos.dat')$mtime
getSemaphore()
load("data/new-videos.dat")
releaseSemaphore()
if (length(datasets[as.numeric(input$chosentab) + 1][[1]]) > 0) {
js$removeCover()
callModule(normalPage, id = input$chosentab, selectedData = loadingFromJSON(as.numeric(input$chosentab) + 1), data = newVideoFinalData,
height = windowHeight, sidebarBug = sidebarBug)
}
}
})
####################### video related event ##########################
# For generating on the fly, observe the input event of youtube id
observeEvent(input$inputID, {
# determine which dataset to add
if (as.numeric(input$chosentab) + 1 < 5) {
js$showWarning("Sorry, you can't add data into default dataset.")
return()
}
# Checking the input id
id <- substr(input$inputID, 1, nchar(input$inputID) - 4)
print(id)
if (startsWith(id, "https")) {
id <- sub(".*?v=([^&]+).*", "\\1", id)
}
if (!length(grep('^[0-9|\\_|a-z|A-Z|\\-]*$',id))) {
js$showWarning("Please enter a valid Youtube id.")
return()
}
# PYTHONEXEC <- "python"
PYTHONEXEC <- "/usr/bin/python"
# Applying crawler
command <- paste(PYTHONEXEC, ' scripts/youtube_crawler.py -i=\'', id, '\' --output=\'./data/crawled/', id, '.json\'', sep = '')
res <- system(command)
if (res) {
js$showWarning("There is an error when crawling the data.")
return()
}
crawledDataPath <- paste('./data/crawled/', id, '.json', sep = '')
crawledData <- fromJSON(crawledDataPath)
if (is.null(crawledData$insights)) {
js$showWarning("Popularity history data for this video is not available, please choose another video.")
return()
}
if (length(strsplit(crawledData$insights$dailyShare, ",")[[1]]) < 120) {
js$showWarning("The history of this video is shorter than 120 days, please choose another video for a more reliable estimate.")
return()
}
if (id %in% datasets[as.numeric(input$chosentab) + 1][[1]] && id %in% newVideoFinalData$YoutubeID) {
js$showWarning("This video is already in this dataset.")
return()
}
js$createProgressElement(id, crawledData$snippet$title, crawledData$snippet$channelTitle, crawledData$snippet$description)
# Add new video into the waiting queue
waitingQueue[length(waitingQueue) + 1] <<- id
waitingDatasetQueue[length(waitingDatasetQueue) + 1] <<- as.numeric(input$chosentab) + 1
})
# remove current video event
observeEvent(input$removeCurrentVideo, {
tmp <- datasets[as.numeric(input$chosentab) + 1][[1]]
datasets[as.numeric(input$chosentab) + 1][[1]] <<- tmp[!(tmp %in% input$removeCurrentVideo)]
save(datasets, file ='data/datasets.dat')
updateUI()
})
# stop training video event
observeEvent(input$stopTrainingVideo, {
js$removeOneVideo(input$stopTrainingVideo)
if (input$stopTrainingVideo %in% waitingQueue) {
waitingQueue <<- waitingQueue[!(waitingQueue %in% input$stopTrainingVideo)]
waitingDatasetQueue <<- waitingDatasetQueue[!(waitingQueue %in% input$stopTrainingVideo)]
} else if (input$stopTrainingVideo %in% nodesInUse) {
index <- match(TRUE, nodesInUse %in% input$stopTrainingVideo)
cl <- nodes[[index]]
stopCluster(cl)
nodes[[index]] <<- makePSOCKcluster("localhost")
nodesInUse[index] <<- NA
# remove progress
getSemaphore()
load('data/videos-progress.dat')
videosProgress <- videosProgress[!(videosProgress$YoutubeID %in% input$stopTrainingVideo), ]
save(videosProgress, file = 'data/videos-progress.dat')
releaseSemaphore()
}
})
# observing video search event
observeEvent(input$search, {
keyword <- substr(input$search, 1, nchar(input$search) - 4)
dataset <- loadingFromJSON(as.numeric(input$chosentab) + 1)
if (nrow(dataset) == 0) {
return()
}
videosFound <- searchForVideos(keyword, dataset)
if (nrow(videosFound) == 0) {
js$showWarning('No videos found! Please try another keyword.')
updateUI()
return()
}
updateUI(videosFound = videosFound)
})
# observing video search cancel event
observeEvent(input$cancelSearch, {
updateUI()
})
######## Dataset mofication groups ##########
# observing adding new dataset
observeEvent(input$newDatasetName, {
datasets$tmp <<- character(length = 0)
names(datasets)[length(datasets)] <<- input$newDatasetName
save(datasets, file = 'data/datasets.dat')
output$menu <- renderMenu({
sidebarMenu(.list = {
# items in left sidebar
menuLists <- list()
i <- 0
for (dataset in names(datasets)) {
menuLists <- list(menuLists, menuItem(dataset, tabName = paste(i, sep = "")))
i <- i + 1
}
menuLists
})
})
})
# observing changing dataset name
observeEvent(input$changeDatasetName, {
names(datasets)[as.numeric(input$chosentab) + 1] <<- input$changeDatasetName
save(datasets, file = 'data/datasets.dat')
})
# observing deleting dataset
observeEvent(input$deleteDataset, {
datasets <<- datasets[-(as.numeric(input$deleteDataset) + 1)]
save(datasets, file = 'data/datasets.dat')
})
}
shinyApp(ui = ui, server = server)