-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_BERT_classifier.py
163 lines (144 loc) · 6.35 KB
/
train_BERT_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import time
import pickle
from tqdm import tqdm
import torch
import torch.nn.functional as F
import numpy as np
from transformers import AdamW, get_linear_schedule_with_warmup
from config import load_arguments
from utils.utils import AverageMeter
from utils.hyper_parameters import nclasses
from dataloaders.BERT_cls_loader import BERTClsDataloader
torch.manual_seed(2020)
np.random.seed(2020)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def evaluation(args, model, dataloader):
model.eval()
pred_index = []
pred_probs = []
with torch.no_grad():
losses = AverageMeter()
acc = AverageMeter()
begin_time = time.time()
for i, data in enumerate(dataloader):
input_ids = data[0].cuda()
input_mask = data[1].cuda()
token_ids = data[2].cuda()
labels = data[3].cuda()
loss, logits = model(input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=token_ids,
labels=labels)
# caculate probs
batch_preds = F.softmax(logits, dim=-1, dtype=torch.float32).cpu().detach()
batch_probs, batch_index = torch.max(batch_preds, dim=-1)
# calcualte accuracy
correct_counts = torch.sum(batch_index == labels.cpu().detach()).numpy()
acc.update(correct_counts, len(labels))
losses.update(loss.item(), 1)
pred_index.append(batch_index.numpy())
pred_probs.append(batch_probs.numpy())
print('Loss %.5f\t Acc %.2f\t Time %.3f' % (losses.avg, acc.avg * 100, time.time() - begin_time))
return losses.avg, acc.avg, np.concatenate(pred_index), np.concatenate(pred_probs)
if __name__ == '__main__':
args = load_arguments()
if not os.path.exists(args.target_model_path):
os.makedirs(args.target_model_path)
# dataset
cache_path = os.path.join('./tmp', args.dataset + '_dataset.cache.pkl')
if os.path.exists(cache_path) and args.load_dataset_from_cache:
with open(cache_path, 'rb') as f:
dataloaders = pickle.load(f)
else:
dataset = BERTClsDataloader(args.case)
dataloaders = dataset.get_training_dataloaders(args)
# with open(cache_path, 'wb') as f:
# pickle.dump(dataloaders, f, pickle.HIGHEST_PROTOCOL)
train_dataloader = dataloaders['train']
val_dataloader = dataloaders['valid']
test_dataloader = dataloaders['test']
# model and optimization
if 'bert' in args.target_model:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained(
'bert-base-'+args.case, num_labels=nclasses[args.dataset],
output_attentions=False, output_hidden_states=False).cuda()
elif args.target_model == 'textcnn':
from models.textcnn import TextCNN
model = TextCNN(len(dataset.tokenizer), nclasses[args.dataset]).cuda()
optimizer = AdamW(model.parameters(), lr=args.cls_lr)
if 'bert' in args.target_model:
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=0,
num_training_steps=len(train_dataloader) * args.cls_epochs)
# train and evaluation output frequence
cls_train_freq = int(len(train_dataloader) / 10)
cls_eval_freq = int(len(train_dataloader) / 3)
model.train()
batch_time = AverageMeter()
losses = AverageMeter()
best_acc = 0
for epoch in range(args.cls_epochs):
print('------------------------- Epoch %d ------------------------- ' % epoch)
batch_time.reset()
losses.reset()
end_time = time.time()
for i, data in enumerate(tqdm(train_dataloader)):
input_ids = data[0].cuda()
input_mask = data[1].cuda()
token_ids = data[2].cuda()
labels = data[3].cuda()
# train step
model.zero_grad()
loss, logits = model(input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=token_ids,
labels=labels)
loss.backward()
optimizer.step()
if 'bert' in args.target_model:
scheduler.step()
# udpate meters
losses.update(loss.item(), 1)
batch_time.update(time.time() - end_time)
end_time = time.time()
# logging output
if i % cls_train_freq == 0:
msg = 'Epoch: [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
'Speed {speed:.1f} samples/s\t' \
'Loss {loss.val:.5f} ({loss.avg:.5f})\t'.format(
epoch, i, len(train_dataloader), batch_time=batch_time,
speed=len(labels)/batch_time.val,
loss=losses)
print(msg)
# if epoch > 0 and i % cls_eval_freq == 0 and i != 0:
print('Valiation Step %d: ' % i)
_, acc, _, _ = evaluation(args, model, val_dataloader)
# save model
if acc > best_acc and args.save_model:
best_acc = acc
print('Saving Model ...')
model.save_pretrained(args.target_model_path)
model.train()
# use the best model testing
print("Loading best model from %s" % args.target_model_path)
if 'bert' in args.target_model:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained(
args.target_model_path, num_labels=nclasses[args.dataset],
output_attentions=False, output_hidden_states=False).cuda()
elif args.target_model == 'textcnn':
from models.textcnn import TextCNN
model = TextCNN(len(dataset.tokenizer), nclasses[args.dataset])
model.load_state_dict(torch.load(
os.path.join(args.target_model_path, 'model.pt')))
model = model.cuda()
print("Evaluating the best model on validation set ...")
evaluation(args, model, val_dataloader)
print("Evaluating the best model on test set ...")
evaluation(args, model, test_dataloader)
if not args.save_model:
os.system('rm -rf %s' % args.target_model_path)