forked from kyegomez/swarms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepseek_example.py
70 lines (56 loc) · 1.75 KB
/
deepseek_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from dotenv import load_dotenv
from openai import OpenAI
from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
load_dotenv()
class DeepSeekChat:
def __init__(
self,
api_key: str = os.getenv("DEEPSEEK_API_KEY"),
system_prompt: str = None,
):
self.api_key = api_key
self.client = OpenAI(
api_key=api_key, base_url="https://api.deepseek.com"
)
def run(self, task: str):
response = self.client.chat.completions.create(
model="deepseek-chat",
messages=[
{
"role": "system",
"content": "You are a helpful assistant",
},
{"role": "user", "content": task},
],
stream=False,
)
print(response)
out = response.choices[0].message.content
print(out)
return out
model = DeepSeekChat()
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=3,
context_length=8192,
return_step_meta=False,
output_type="str", # "json", "dict", "csv" OR "string" "yaml" and
auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
max_tokens=4000, # max output tokens
)
print(
agent.run(
"Create a table of super high growth opportunities for AI. I have $40k to invest in ETFs, index funds, and more. Please create a table in markdown.",
)
)