forked from simontomaskarlsson/CycleGAN-Keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
executable file
·111 lines (90 loc) · 5.18 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import numpy as np
from PIL import Image
from keras.utils import Sequence
#from skimage.io import imread
def load_data(nr_of_channels, batch_size=1, nr_A_train_imgs=None, nr_B_train_imgs=None,
nr_A_test_imgs=None, nr_B_test_imgs=None, subfolder='',
generator=False, D_model=None, use_multiscale_discriminator=False, use_supervised_learning=False, REAL_LABEL=1.0):
trainA_path = os.path.join('data', subfolder, 'trainA')
trainB_path = os.path.join('data', subfolder, 'trainB')
testA_path = os.path.join('data', subfolder, 'testA')
testB_path = os.path.join('data', subfolder, 'testB')
trainA_image_names = os.listdir(trainA_path)
if nr_A_train_imgs != None:
trainA_image_names = trainA_image_names[:nr_A_train_imgs]
trainB_image_names = os.listdir(trainB_path)
if nr_B_train_imgs != None:
trainB_image_names = trainB_image_names[:nr_B_train_imgs]
testA_image_names = os.listdir(testA_path)
if nr_A_test_imgs != None:
testA_image_names = testA_image_names[:nr_A_test_imgs]
testB_image_names = os.listdir(testB_path)
if nr_B_test_imgs != None:
testB_image_names = testB_image_names[:nr_B_test_imgs]
if generator:
return data_sequence(trainA_path, trainB_path, trainA_image_names, trainB_image_names, batch_size=batch_size) # D_model, use_multiscale_discriminator, use_supervised_learning, REAL_LABEL)
else:
trainA_images = create_image_array(trainA_image_names, trainA_path, nr_of_channels)
trainB_images = create_image_array(trainB_image_names, trainB_path, nr_of_channels)
testA_images = create_image_array(testA_image_names, testA_path, nr_of_channels)
testB_images = create_image_array(testB_image_names, testB_path, nr_of_channels)
return {"trainA_images": trainA_images, "trainB_images": trainB_images,
"testA_images": testA_images, "testB_images": testB_images,
"trainA_image_names": trainA_image_names,
"trainB_image_names": trainB_image_names,
"testA_image_names": testA_image_names,
"testB_image_names": testB_image_names}
def create_image_array(image_list, image_path, nr_of_channels):
image_array = []
for image_name in image_list:
if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files
if nr_of_channels == 1: # Gray scale image -> MR image
image = np.array(Image.open(os.path.join(image_path, image_name)))
image = image[:, :, np.newaxis]
else: # RGB image -> street view
image = np.array(Image.open(os.path.join(image_path, image_name)))
image = normalize_array(image)
image_array.append(image)
return np.array(image_array)
# If using 16 bit depth images, use the formula 'array = array / 32767.5 - 1' instead
def normalize_array(array):
array = array / 127.5 - 1
return array
class data_sequence(Sequence):
def __init__(self, trainA_path, trainB_path, image_list_A, image_list_B, batch_size=1): # , D_model, use_multiscale_discriminator, use_supervised_learning, REAL_LABEL):
self.batch_size = batch_size
self.train_A = []
self.train_B = []
for image_name in image_list_A:
if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files
self.train_A.append(os.path.join(trainA_path, image_name))
for image_name in image_list_B:
if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files
self.train_B.append(os.path.join(trainB_path, image_name))
def __len__(self):
return int(max(len(self.train_A), len(self.train_B)) / float(self.batch_size))
def __getitem__(self, idx): # , use_multiscale_discriminator, use_supervised_learning):if loop_index + batch_size >= min_nr_imgs:
if idx >= min(len(self.train_A), len(self.train_B)):
# If all images soon are used for one domain,
# randomly pick from this domain
if len(self.train_A) <= len(self.train_B):
indexes_A = np.random.randint(len(self.train_A), size=self.batch_size)
batch_A = []
for i in indexes_A:
batch_A.append(self.train_A[i])
batch_B = self.train_B[idx * self.batch_size:(idx + 1) * self.batch_size]
else:
indexes_B = np.random.randint(len(self.train_B), size=self.batch_size)
batch_B = []
for i in indexes_B:
batch_B.append(self.train_B[i])
batch_A = self.train_A[idx * self.batch_size:(idx + 1) * self.batch_size]
else:
batch_A = self.train_A[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_B = self.train_B[idx * self.batch_size:(idx + 1) * self.batch_size]
real_images_A = create_image_array(batch_A, '', 3)
real_images_B = create_image_array(batch_B, '', 3)
return real_images_A, real_images_B # input_data, target_data
if __name__ == '__main__':
load_data()