-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClarke1996.m
109 lines (81 loc) · 3.26 KB
/
Clarke1996.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function V_avg = Clarke1996(D_n,S,rho_m,rho_f,g)
% This Matlab-function calculates flow velocities from boulder sizes
% following Clarke (1996), who uses a force balance approach for incipient
% motion after Costa (1983). Incipient motion of boulders under turbulent
% and Newtonian fluid-flow is presupposed.
%
% F_c = F_l + F_d
%
% Critical force F_c is equal to the sum of the lift force F_l and drag
% force F_d operating on the boulder.
%
%
% input arguments:
%
% D_n nominal diameter in [m],
% equal to (three major axes)^(1/3)
% S bed slope angle [rad]
% rho_m boulder density [kg/m^3]
% rho_f fluid density [kg/m^3]
% g gravitational acceleration [m/s^2]
%
% output arguments:
%
% V_avg average velocity of stream flow
%
%
% Author: Marius Huber ([email protected])
% Date: 24. October, 2018
%--------------------------------------------------------------------------
%set coefficients
mu_s = 0.625; %coefficent of sliding friction for a cubic boulder
mu_r = 0.225; %coefficent of rolling friction for a spherical boulder
C_l_c = 0.178; %lift coefficient for a cubic boulder
C_l_s = 0.20; %lift coefficient for a spherical boulder
C_d_c = 1.18; %drag coefficient for a cubic boulder
C_d_s = 0.20; %drag coefficient for a spherical boulder
%--------------------------------------------------------------------------
%mass of a cubic boulder
M_c = (D_n.^3).*rho_m;
%mass of a spherical boulder
M_s = [(D_n.^3).*(pi/6)].*rho_m;
%resisting force for cubic boulder
F_r_c = M_c.*[(rho_m-rho_f)/rho_m].*g.*(((cos(S))*mu_s)-(sin(S)));
%resisting force for spherical boulder
F_r_s = M_s.*[(rho_m-rho_f)/rho_m].*g.*(((cos(S))*mu_r)-(sin(S)));
%critical force for cubic boulder
F_c_c = F_r_c;
%critical force for spherical boulder
F_c_s = F_r_s;
%drag force for cubic boulder
F_d_c = (F_c_c.*C_d_c)./(C_l_c+C_d_c);
%drag force for spherical boulder
F_d_s = (F_c_s.*C_d_s)./(C_l_s+C_d_s);
%cross-sectional area of the boulder for a cubic boulder
A_c = D_n.^2;
%cross-sectional area of the boulder for a spherical boulder
A_s = ((D_n./2).^2).*pi;
%critical velocity for a cubic boulder
V_c_c = [(((F_d_c./C_d_c)./rho_f).*2)./A_c].^(0.5);
%critical velocity for a spherical boulder
V_c_s = [(((F_d_s./C_d_s)./rho_f).*2)./A_s].^(0.5);
%average critical velocity for both forms
V_critical = (V_c_c+V_c_s)./2;
%average velocity of stream flow (multiplication with 1.2)
V_avg = V_critical.*1.2;
%adjusted to approximate mean velocities (Baker 1973, p. 27)
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%plotting
%figure(1)
%plot(D,V_avg);
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
end
% Reference:
% Clarke, A.O., 1996. Estimating probable maximum floods in the Upper Santa
% Ana Basin, Southern California, from stream boulder size. Environmental
% & Engineering Geoscience, 2(2): 165-182.
% Costa, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks
% from boulder deposits in the Colorado Front Range. Geological Society
% of America Bulletin, 94(8): 986-1004.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Copyright (C) 2021 Marius Huber, full license notice in the read-me file