forked from zlai0/CorrFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_oxuva.py
230 lines (177 loc) · 7.15 KB
/
main_oxuva.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import functional.feeder.dataset.OxUva as O
import functional.feeder.dataset.OxUvaLoader as OL
import logger
from models.corrflow import CorrFlow
from models.submodule import one_hot
from test import test
parser = argparse.ArgumentParser(description='CorrFlow')
# Data options
parser.add_argument('--datapath', default='/scratch/local/ramdisk/zlai/oxuva/all/',
help='Data path for Kinetics')
parser.add_argument('--csvpath', default='datas/oxuva.csv',
help='Path for csv file')
parser.add_argument('--savepath', type=str, default='results/test',
help='Path for checkpoints and logs')
parser.add_argument('--resume', type=str, default=None,
help='Checkpoint file to resume')
# Training options
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=2e-4,
help='learning rate')
parser.add_argument('--bsize', type=int, default=6,
help='batch size for training (default: 6)')
parser.add_argument('--worker', type=int, default=8,
help='number of dataloader threads')
args = parser.parse_args()
def main():
if not os.path.isdir(args.savepath):
os.makedirs(args.savepath)
log = logger.setup_logger(args.savepath + '/training.log')
for key, value in sorted(vars(args).items()):
log.info(str(key) + ': ' + str(value))
TrainData = O.dataloader(args.csvpath)
TrainImgLoader = torch.utils.data.DataLoader(
OL.myImageFloder(args.datapath, TrainData, True),
batch_size=args.bsize, shuffle=True, num_workers=args.worker,drop_last=True
)
model = CorrFlow(args)
model = nn.DataParallel(model).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9,0.999))
log.info('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
if args.resume:
if os.path.isfile(args.resume):
log.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
log.info("=> loaded checkpoint '{}'".format(args.resume))
else:
log.info("=> No checkpoint found at '{}'".format(args.resume))
log.info("=> Will start from scratch.")
else:
log.info('=> No checkpoint file. Start from scratch.')
start_full_time = time.time()
for epoch in range(args.epochs):
log.info('This is {}-th epoch'.format(epoch))
train(TrainImgLoader, model, optimizer, log, epoch)
log.info('full training time = {:.2f} Hours'.format((time.time() - start_full_time) / 3600))
def train(dataloader, model, optimizer, log, epoch):
_loss = AverageMeter()
n_b = len(dataloader)
for b_i, (images_rgb, images_quantized) in enumerate(dataloader):
model.train()
b_s = time.perf_counter()
adjust_lr(optimizer, epoch, b_i, n_b)
images_rgb = [r.cuda() for r in images_rgb]
images_quantized = [q.cuda() for q in images_quantized]
if not args.fullcolor:
model.module.dropout2d(images_rgb)
optimizer.zero_grad()
l_sim = compute_ls(model, images_rgb, images_quantized, b_i, epoch, n_b)
l_long = compute_ll(model, images_rgb, images_quantized)
sum_loss = l_sim + l_long * 0.1
sum_loss.backward()
optimizer.step()
_loss.update(sum_loss.item())
info = 'Loss = {:.3f}({:.3f})'.format(_loss.val, _loss.avg)
b_t = time.perf_counter() - b_s
for param_group in optimizer.param_groups:
lr_now = param_group['lr']
log.info('Epoch{} [{}/{}] {} T={:.2f} LR={:.6f}'.format(
epoch, b_i, n_b, info, b_t, lr_now))
if b_i > 0 and (b_i * args.bsize) % 10000 < args.bsize:
log.info("Saving new checkpoint.")
savefilename = args.savepath + '/checkpoint.tar'
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, savefilename)
def compute_ls(model, image_rgb, image_q, bi, epoch, n_b):
eps_s, eps_e = 0.9, 0.6
b, c, h, w = image_rgb[0].size()
# Loss similarity
l_sim = 0
for i in range(2): # 3-1
ref_g = image_rgb[i]
tar_g = image_rgb[i + 1]
tar_c = image_q[i + 1]
tar_c = torch.squeeze(tar_c, 1)
total_batch = args.epochs * n_b
current_batch = epoch * n_b + bi
thres = eps_s - (eps_s - eps_e) * current_batch / total_batch
truth = np.random.random() < thres
ref_c = image_q[i] if truth or (i == 0) else outputs
outputs = model(ref_g, ref_c, tar_g)
outputs = F.interpolate(outputs, (h, w), mode='bilinear')
loss = cross_entropy(outputs, tar_c, size_average=True)
l_sim += loss
return l_sim
def compute_ll(model, image_rgb, image_q):
b, c, h, w = image_rgb[0].size()
# Loss long
l_long = 0
for i in range(1,3):
for j in range(i):
ref_g = image_rgb[j]
if j == 0:
ref_c = image_q[j]
else:
ref_c = outputs
tar_g = image_rgb[j + 1]
outputs = model(ref_g, ref_c, tar_g)
outputs = F.interpolate(outputs, (h, w), mode='bilinear')
for j in range(i,0,-1):
ref_g = image_rgb[j]
ref_c = outputs
tar_g = image_rgb[j-1]
outputs = model(ref_g, ref_c, tar_g)
outputs = F.interpolate(outputs, (h, w), mode='bilinear')
tar_c = image_q[0]
tar_c = torch.squeeze(tar_c, 1)
loss = cross_entropy(outputs, tar_c, size_average=True)
l_long += loss
return l_long
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_lr(optimizer, epoch, batch, n_b):
iteration = (batch + epoch * n_b) * args.bsize
if iteration <= 400000:
lr = args.lr
elif iteration <= 600000:
lr = args.lr * 0.5
elif iteration <= 800000:
lr = args.lr * 0.25
elif iteration <= 1000000:
lr = args.lr * 0.125
else:
lr = args.lr * 0.0625
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, reduction='mean'):
if size_average:
reduction = 'mean'
return F.nll_loss(torch.log(input + 1e-8), target, weight, None, ignore_index, None, reduction)
if __name__ == '__main__':
main()