-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
464 lines (419 loc) · 19.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import torch
import argparse
import torch.nn as nn
import torch.utils.data as Data
import torch.backends.cudnn as cudnn
from scipy.io import loadmat
from scipy.io import savemat
from torch import optim
from torch.autograd import Variable
from vit_pytorch_indian_Houston import ViT #根据不同的数据集调用不同的网络结构
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np
import time
import os
parser = argparse.ArgumentParser("HSI")
parser.add_argument('--dataset', choices=['Indian', 'Pavia', 'Houston'], default='Indian', help='dataset to use')
parser.add_argument('--flag_test', choices=['test', 'train'], default='train', help='testing mark')
parser.add_argument('--mode', choices=['ViT', 'CAF'], default='ViT', help='mode choice')
parser.add_argument('--gpu_id', default='3', help='gpu id')
parser.add_argument('--seed', type=int, default=0, help='number of seed')
parser.add_argument('--batch_size', type=int, default=64, help='number of batch size')
parser.add_argument('--test_freq', type=int, default=5, help='number of evaluation')
parser.add_argument('--patches', type=int, default=1, help='number of patches')
parser.add_argument('--band_patches', type=int, default=1, help='number of related band')
parser.add_argument('--epoches', type=int, default=300, help='epoch number')
parser.add_argument('--learning_rate', type=float, default=5e-4, help='learning rate')
parser.add_argument('--gamma', type=float, default=0.9, help='gamma')
parser.add_argument('--weight_decay', type=float, default=0, help='weight_decay')
parser.add_argument('--channels_band', type=int, default=0, help='channels_band')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
#-------------------------------------------------------------------------------
# 定位训练和测试样本
def chooose_train_and_test_point(train_data, test_data, true_data, num_classes):
number_train = []
pos_train = {}
number_test = []
pos_test = {}
number_true = []
pos_true = {}
#-------------------------for train data------------------------------------
for i in range(num_classes):
each_class = []
each_class = np.argwhere(train_data==(i+1))
number_train.append(each_class.shape[0])
pos_train[i] = each_class
total_pos_train = pos_train[0]
for i in range(1, num_classes):
total_pos_train = np.r_[total_pos_train, pos_train[i]] #(695,2)
total_pos_train = total_pos_train.astype(int)
#--------------------------for test data------------------------------------
for i in range(num_classes):
each_class = []
each_class = np.argwhere(test_data==(i+1))
number_test.append(each_class.shape[0])
pos_test[i] = each_class
total_pos_test = pos_test[0]
for i in range(1, num_classes):
total_pos_test = np.r_[total_pos_test, pos_test[i]] #(9671,2)
total_pos_test = total_pos_test.astype(int)
#--------------------------for true data------------------------------------
for i in range(num_classes+1):
each_class = []
each_class = np.argwhere(true_data==i)
number_true.append(each_class.shape[0])
pos_true[i] = each_class
total_pos_true = pos_true[0]
for i in range(1, num_classes+1):
total_pos_true = np.r_[total_pos_true, pos_true[i]]
total_pos_true = total_pos_true.astype(int)
return total_pos_train, total_pos_test, total_pos_true, number_train, number_test, number_true
#-------------------------------------------------------------------------------
# 边界拓展:镜像
def mirror_hsi(height,width,band,input_normalize,patch=5):
padding=patch//2
mirror_hsi=np.zeros((height+2*padding,width+2*padding,band),dtype=float)
#中心区域
mirror_hsi[padding:(padding+height),padding:(padding+width),:]=input_normalize
#左边镜像
for i in range(padding):
mirror_hsi[padding:(height+padding),i,:]=input_normalize[:,padding-i-1,:]
#右边镜像
for i in range(padding):
mirror_hsi[padding:(height+padding),width+padding+i,:]=input_normalize[:,width-1-i,:]
#上边镜像
for i in range(padding):
mirror_hsi[i,:,:]=mirror_hsi[padding*2-i-1,:,:]
#下边镜像
for i in range(padding):
mirror_hsi[height+padding+i,:,:]=mirror_hsi[height+padding-1-i,:,:]
print("**************************************************")
print("patch is : {}".format(patch))
print("mirror_image shape : [{0},{1},{2}]".format(mirror_hsi.shape[0],mirror_hsi.shape[1],mirror_hsi.shape[2]))
print("**************************************************")
return mirror_hsi
#-------------------------------------------------------------------------------
# 获取patch的图像数据
def gain_neighborhood_pixel(mirror_image, point, i, patch=5):
x = point[i,0]
y = point[i,1]
temp_image = mirror_image[x:(x+patch),y:(y+patch),:]
return temp_image
def gain_neighborhood_band(x_train, band, band_patch, patch=5):
nn = band_patch // 2
pp = (patch*patch) // 2
x_train_reshape = x_train.reshape(x_train.shape[0], patch*patch, band)
x_train_band = np.zeros((x_train.shape[0], patch*patch*band_patch, band),dtype=float)
# 中心区域
x_train_band[:,nn*patch*patch:(nn+1)*patch*patch,:] = x_train_reshape
#左边镜像
for i in range(nn):
if pp > 0:
x_train_band[:,i*patch*patch:(i+1)*patch*patch,:i+1] = x_train_reshape[:,:,band-i-1:]
x_train_band[:,i*patch*patch:(i+1)*patch*patch,i+1:] = x_train_reshape[:,:,:band-i-1]
else:
x_train_band[:,i:(i+1),:(nn-i)] = x_train_reshape[:,0:1,(band-nn+i):]
x_train_band[:,i:(i+1),(nn-i):] = x_train_reshape[:,0:1,:(band-nn+i)]
#右边镜像
for i in range(nn):
if pp > 0:
x_train_band[:,(nn+i+1)*patch*patch:(nn+i+2)*patch*patch,:band-i-1] = x_train_reshape[:,:,i+1:]
x_train_band[:,(nn+i+1)*patch*patch:(nn+i+2)*patch*patch,band-i-1:] = x_train_reshape[:,:,:i+1]
else:
x_train_band[:,(nn+1+i):(nn+2+i),(band-i-1):] = x_train_reshape[:,0:1,:(i+1)]
x_train_band[:,(nn+1+i):(nn+2+i),:(band-i-1)] = x_train_reshape[:,0:1,(i+1):]
return x_train_band
#-------------------------------------------------------------------------------
# 汇总训练数据和测试数据
def train_and_test_data(mirror_image, band, train_point, test_point, true_point, patch=5, band_patch=3):
x_train = np.zeros((train_point.shape[0], patch, patch, band), dtype=float)
x_test = np.zeros((test_point.shape[0], patch, patch, band), dtype=float)
x_true = np.zeros((true_point.shape[0], patch, patch, band), dtype=float)
for i in range(train_point.shape[0]):
x_train[i,:,:,:] = gain_neighborhood_pixel(mirror_image, train_point, i, patch)
for j in range(test_point.shape[0]):
x_test[j,:,:,:] = gain_neighborhood_pixel(mirror_image, test_point, j, patch)
for k in range(true_point.shape[0]):
x_true[k,:,:,:] = gain_neighborhood_pixel(mirror_image, true_point, k, patch)
print("x_train shape = {}, type = {}".format(x_train.shape,x_train.dtype))
print("x_test shape = {}, type = {}".format(x_test.shape,x_test.dtype))
print("x_true shape = {}, type = {}".format(x_true.shape,x_test.dtype))
print("**************************************************")
x_train_band = gain_neighborhood_band(x_train, band, band_patch, patch)
x_test_band = gain_neighborhood_band(x_test, band, band_patch, patch)
x_true_band = gain_neighborhood_band(x_true, band, band_patch, patch)
print("x_train_band shape = {}, type = {}".format(x_train_band.shape,x_train_band.dtype))
print("x_test_band shape = {}, type = {}".format(x_test_band.shape,x_test_band.dtype))
print("x_true_band shape = {}, type = {}".format(x_true_band.shape,x_true_band.dtype))
print("**************************************************")
return x_train_band, x_test_band, x_true_band
#-------------------------------------------------------------------------------
# 标签y_train, y_test
def train_and_test_label(number_train, number_test, number_true, num_classes):
y_train = []
y_test = []
y_true = []
for i in range(num_classes):
for j in range(number_train[i]):
y_train.append(i)
for k in range(number_test[i]):
y_test.append(i)
for i in range(num_classes+1):
for j in range(number_true[i]):
y_true.append(i)
y_train = np.array(y_train)
y_test = np.array(y_test)
y_true = np.array(y_true)
print("y_train: shape = {} ,type = {}".format(y_train.shape,y_train.dtype))
print("y_test: shape = {} ,type = {}".format(y_test.shape,y_test.dtype))
print("y_true: shape = {} ,type = {}".format(y_true.shape,y_true.dtype))
print("**************************************************")
return y_train, y_test, y_true
#-------------------------------------------------------------------------------
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
#-------------------------------------------------------------------------------
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res, target, pred.squeeze()
#-------------------------------------------------------------------------------
# train model
def train_epoch(model, train_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target) in enumerate(train_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
optimizer.zero_grad()
batch_pred = model(batch_data)
loss = criterion(batch_pred, batch_target)
loss.backward()
optimizer.step()
prec1, t, p = accuracy(batch_pred, batch_target, topk=(1,))
n = batch_data.shape[0]
objs.update(loss.data, n)
top1.update(prec1[0].data, n)
tar = np.append(tar, t.data.cpu().numpy())
pre = np.append(pre, p.data.cpu().numpy())
return top1.avg, objs.avg, tar, pre
#-------------------------------------------------------------------------------
# validate model
def valid_epoch(model, valid_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target) in enumerate(valid_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
batch_pred = model(batch_data)
loss = criterion(batch_pred, batch_target)
prec1, t, p = accuracy(batch_pred, batch_target, topk=(1,))
n = batch_data.shape[0]
objs.update(loss.data, n)
top1.update(prec1[0].data, n)
tar = np.append(tar, t.data.cpu().numpy())
pre = np.append(pre, p.data.cpu().numpy())
return tar, pre
def test_epoch(model, test_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target) in enumerate(test_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
batch_pred = model(batch_data)
_, pred = batch_pred.topk(1, 1, True, True)
pp = pred.squeeze()
pre = np.append(pre, pp.data.cpu().numpy())
return pre
#-------------------------------------------------------------------------------
def output_metric(tar, pre):
matrix = confusion_matrix(tar, pre)
OA, AA_mean, Kappa, AA = cal_results(matrix)
return OA, AA_mean, Kappa, AA
#-------------------------------------------------------------------------------
def cal_results(matrix):
shape = np.shape(matrix)
number = 0
sum = 0
AA = np.zeros([shape[0]], dtype=float)
for i in range(shape[0]):
number += matrix[i, i]
AA[i] = matrix[i, i] / np.sum(matrix[i, :])
sum += np.sum(matrix[i, :]) * np.sum(matrix[:, i])
OA = number / np.sum(matrix)
AA_mean = np.mean(AA)
pe = sum / (np.sum(matrix) ** 2)
Kappa = (OA - pe) / (1 - pe)
return OA, AA_mean, Kappa, AA
#-------------------------------------------------------------------------------
# Parameter Setting
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = False
# prepare data
if args.dataset == 'Indian':
data = loadmat('./data/IndianPine.mat')
elif args.dataset == 'Pavia':
data = loadmat('./data/Pavia.mat')
elif args.dataset == 'Houston':
data = loadmat('./data/Houston.mat')
else:
raise ValueError("Unkknow dataset")
color_mat = loadmat('./data/AVIRIS_colormap.mat')
TR = data['TR']
TE = data['TE']
input = data['input'] #(145,145,200)
# print(input.shape)
# exit()
label = TR + TE
num_classes = np.max(TR)
color_mat_list = list(color_mat)
color_matrix = color_mat[color_mat_list[3]] #(17,3)
# normalize data by band norm
input_normalize = np.zeros(input.shape)
for i in range(input.shape[2]):
input_max = np.max(input[:,:,i])
input_min = np.min(input[:,:,i])
input_normalize[:,:,i] = (input[:,:,i]-input_min)/(input_max-input_min)
# data size
height, width, band = input.shape
print("height={0},width={1},band={2}".format(height, width, band))
#-------------------------------------------------------------------------------
# obtain train and test data
total_pos_train, total_pos_test, total_pos_true, number_train, number_test, number_true = chooose_train_and_test_point(TR, TE, label, num_classes)
mirror_image = mirror_hsi(height, width, band, input_normalize, patch=args.patches)
x_train_band, x_test_band, x_true_band = train_and_test_data(mirror_image, band, total_pos_train, total_pos_test, total_pos_true, patch=args.patches, band_patch=args.band_patches)
y_train, y_test, y_true = train_and_test_label(number_train, number_test, number_true, num_classes)
#-------------------------------------------------------------------------------
# load data
x_train=torch.from_numpy(x_train_band.transpose(0,2,1)).type(torch.FloatTensor) #[695, 200, 7, 7]
y_train=torch.from_numpy(y_train).type(torch.LongTensor) #[695]
Label_train=Data.TensorDataset(x_train,y_train)
x_test=torch.from_numpy(x_test_band.transpose(0,2,1)).type(torch.FloatTensor) # [9671, 200, 7, 7]
y_test=torch.from_numpy(y_test).type(torch.LongTensor) # [9671]
Label_test=Data.TensorDataset(x_test,y_test)
x_true=torch.from_numpy(x_true_band.transpose(0,2,1)).type(torch.FloatTensor)
y_true=torch.from_numpy(y_true).type(torch.LongTensor)
Label_true=Data.TensorDataset(x_true,y_true)
label_train_loader=Data.DataLoader(Label_train,batch_size=args.batch_size,shuffle=True)
label_test_loader=Data.DataLoader(Label_test,batch_size=args.batch_size,shuffle=True)
label_true_loader=Data.DataLoader(Label_true,batch_size=100,shuffle=False)
#-------------------------------------------------------------------------------
# create model
model = ViT(
image_size = args.patches,
near_band = args.band_patches,
num_patches = band,
num_classes = num_classes,
channels_band = args.channels_band,
dim = 64,
depth = 5,
heads = 4,
mlp_dim = 8,
#n_levels = 2,
dropout = 0.1,
emb_dropout = 0.1,
mode = args.mode
)
model = model.cuda()
# criterion
criterion = nn.CrossEntropyLoss().cuda()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.epoches//10, gamma=args.gamma)
#-------------------------------------------------------------------------------
if args.flag_test == 'test':
if args.mode == 'ViT':
model.load_state_dict(torch.load('./log_locality/ViT.pt'))
elif (args.mode == 'CAF') & (args.patches == 7):
model.load_state_dict(torch.load('./log/IP.pt'))
else:
raise ValueError("Wrong Parameters")
model.eval()
tar_v, pre_v = valid_epoch(model, label_test_loader, criterion, optimizer)
OA2, AA_mean2, Kappa2, AA2 = output_metric(tar_v, pre_v)
# output classification maps
pre_u = test_epoch(model, label_true_loader, criterion, optimizer)
prediction_matrix = np.zeros((height, width), dtype=float)
for i in range(total_pos_true.shape[0]):
prediction_matrix[total_pos_true[i,0], total_pos_true[i,1]] = pre_u[i] + 1
plt.subplot(1,1,1)
plt.imshow(prediction_matrix, colors.ListedColormap(color_matrix))
plt.xticks([])
plt.yticks([])
plt.show()
savemat('matrix.mat',{'P':prediction_matrix, 'label':label})
elif args.flag_test == 'train':
print("start training")
tic = time.time()
best_acc = 0.0
# PATH = "./log2/best_model_SpectralFormer_patch_pretrain.pt"
# pretrained_dict = torch.load(PATH)
# model_dict = model.state_dict()
#只加载和当前网络参数命名相同的预训练的参数
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# model.load_state_dict(model_dict)
for epoch in range(args.epoches):
# train model
model.train()
train_acc, train_obj, tar_t, pre_t = train_epoch(model, label_train_loader, criterion, optimizer)
OA1, AA_mean1, Kappa1, AA1 = output_metric(tar_t, pre_t)
print("Epoch: {:03d} train_loss: {:.4f} train_acc: {:.4f}"
.format(epoch + 1, train_obj, train_acc))
if (epoch % args.test_freq == 0) | (epoch == args.epoches - 1):
model.eval()
tar_v, pre_v = valid_epoch(model, label_test_loader, criterion, optimizer)
OA2, AA_mean2, Kappa2, AA2 = output_metric(tar_v, pre_v)
if OA2 > best_acc:
best_acc = OA2
PATH = "./log/IP.pt"
torch.save(model.state_dict(),PATH)
print("Epoch: {:03d} test_acc: {:.4f}".format(epoch + 1, OA2))
# #print("Epoch: {:03d} test_OA: {:.4f} AA: {:.4f} kappa: {:.4f} AA_whole: {:.4f} AF {:}".format(epoch + 1,
# OA2,
# AA_mean2,
# Kappa2,
# AA2[-1],
# 'D'if args.device == '0' else ''))
scheduler.step()
toc = time.time()
print("Running Time: {:.2f}".format(toc - tic))
print("**************************************************")
print("Final result:")
print("OA: {:.4f} | AA: {:.4f} | Kappa: {:.4f}".format(OA2, AA_mean2, Kappa2))
print(AA2)
print("**************************************************")
print("模型参数已经保存")
print("Parameter:")
def print_args(args):
for k, v in zip(args.keys(), args.values()):
print("{0}: {1}".format(k,v))
print_args(vars(args))