-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGaussify.py
executable file
·191 lines (137 loc) · 5.62 KB
/
Gaussify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python
import numpy as np
from PSourceExtract import Gaussian
import pylab
import scipy.optimize
import time
from PSourceExtract import ClassIslands
from Other import ModColor
import pickle
import optparse
#from PSourceExtract.ClassPointFit2 import ClassPointFit as ClassFit
#import ClassPointFit as ClassPointFit
from PSourceExtract import ClassFitIslands
from pyrap.images import image
from Other.progressbar import ProgressBar
from Other import reformat
from Sky import ClassSM
from Other import rad2hmsdms
from DDFacet.Other import MyLogger
log=MyLogger.getLogger("Gaussify")
def read_options():
desc="""Questions and suggestions: [email protected]"""
global options
opt = optparse.OptionParser(usage='Usage: %prog --ms=somename.MS <options>',version='%prog version 1.0',description=desc)
group = optparse.OptionGroup(opt, "* Data-related options", "Won't work if not specified.")
group.add_option('--RestoredImage',help='',type="str",default="")
group.add_option('--MaskName',help='',type="str",default="")
group.add_option('--Osm',help='Output Sky model [no default]',default='')
group.add_option('--PSF',help='PSF (Majax,Minax,PA) in (arcsec,arcsec,deg). Default is %default',default="")
group.add_option('--Pfact',help='PSF size multiplying factor. Default is %default',default="1")
group.add_option('--DoPlot',help=' Default is %default',default="0")
group.add_option('--DoPrint',help=' Default is %default',default="0")
group.add_option('--NCPU',help=' Default is %default',default=6,type="int")
opt.add_option_group(group)
options, arguments = opt.parse_args()
f = open("last_MakePModel.obj","wb")
pickle.dump(options,f)
from pyrap.images import image
from DDFacet.Imager.ClassModelMachine import ClassModelMachine
from DDFacet.Imager import ClassCasaImage
def main(options=None):
if options==None:
f = open("last_MakePModel.obj",'rb')
options = pickle.load(f)
Osm=options.Osm
Pfact=float(options.Pfact)
DoPlot=(options.DoPlot=="1")
imname=options.RestoredImage
if Osm=="":
Osm=reformat.reformat(imname,LastSlash=False)
print>>log, "Fitting sources in %s"%(imname)
im=image(imname)
PMaj=None
try:
PMaj=(im.imageinfo()["restoringbeam"]["major"]["value"])
PMin=(im.imageinfo()["restoringbeam"]["minor"]["value"])
PPA=(im.imageinfo()["restoringbeam"]["positionangle"]["value"])
PMaj*=Pfact
PMin*=Pfact
except:
print>>log, ModColor.Str(" No psf seen in header")
pass
if options.PSF!="":
m0,m1,pa=options.PSF.split(',')
PMaj,PMin,PPA=float(m0),float(m1),float(pa)
PMaj*=Pfact
PMin*=Pfact
if PMaj!=None:
print>>log, "Using psf (maj,min,pa)=(%6.2f, %6.2f, %6.2f) (mult. fact.=%6.2f)"%(PMaj,PMin,PPA,Pfact)
else:
print>>log, ModColor.Str("No psf info could be gotten from anywhere")
print>>log, ModColor.Str(" use PSF keyword to tell what the psf is or is not")
exit()
ToSig=(1./3600.)*(np.pi/180.)/(2.*np.sqrt(2.*np.log(2)))
PMaj*=ToSig
PMin*=ToSig
PPA*=np.pi/180
b=im.getdata()[0,0,:,:]
#b=b[3000:4000,3000:4000]#[120:170,300:370]
c=im.coordinates()
incr=np.abs(c.dict()["direction0"]["cdelt"][0])
print>>log, "Psf Size Sigma_(Maj,Min) = (%5.1f,%5.1f) pixels"%(PMaj/incr,PMin/incr)
nx,_=b.shape
Nr=10000
indx,indy=np.int64(np.random.rand(Nr)*nx),np.int64(np.random.rand(Nr)*nx)
StdResidual=np.std(b[indx,indy])
MaskName=options.MaskName
CasaMaskImage=image(MaskName)
MaskImage=CasaMaskImage.getdata()[0,0,:,:]
snr=None
Boost=None
Islands=ClassIslands.ClassIslands(b,T=snr,Boost=Boost,DoPlot=DoPlot,MaskImage=MaskImage)
Islands.FindAllIslands()
Islands.Noise=StdResidual
CFit=ClassFitIslands.ClassFitIslands(Islands,NCPU=options.NCPU)
#sourceList=CFit.FitSerial((PMin,PMaj,PPA),incr,StdResidual)
sourceList=CFit.FitParallel((PMin,PMaj,PPA),incr,StdResidual)
xlist=[]
ylist=[]
slist=[]
Cat=np.zeros((50000,),dtype=[('ra',np.float),('dec',np.float),('I',np.float),('Gmaj',np.float),('Gmin',np.float),('Gangle',np.float)])
Cat=Cat.view(np.recarray)
isource=0
for Dico in sourceList:
if type(Dico)==list: continue
for iCompDico in sorted(Dico.keys()):
CompDico=Dico[iCompDico]
if CompDico["SM"]>5: continue
if CompDico["Sm"]>5: continue
i=CompDico["l"]
j=CompDico["m"]
s=CompDico["s"]
xlist.append(i)
ylist.append(j)
slist.append(s)
f,d,dec,ra=im.toworld((0,0,i,j))
Cat.ra[isource]=ra
Cat.dec[isource]=dec
Cat.I[isource]=s
Cat.Gmin[isource]=CompDico["Sm"]*(incr/ToSig/3600.)*np.pi/180/(2.*np.sqrt(2.*np.log(2)))
Cat.Gmaj[isource]=CompDico["SM"]*(incr/ToSig/3600.)*np.pi/180/(2.*np.sqrt(2.*np.log(2)))
Cat.Gangle[isource]=-CompDico["PA"]+np.pi/2
isource +=1
Cat=Cat[Cat.ra!=0].copy()
Islands.FittedComps=(xlist,ylist,slist)
Islands.plot()
SM=ClassSM.ClassSM(Osm,ReName=True,DoREG=True,SaveNp=True,FromExt=Cat)#,NCluster=NCluster,DoPlot=DoPlot,ClusterMethod=CMethod)
#SM=ClassSM.ClassSM(Osm,ReName=True,SaveNp=True,DoPlot=DoPlot,FromExt=Cat)
SM.MakeREG()
SM.Save()
########################################################
import warnings
if __name__=="__main__":
read_options()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
main()