forked from UKPLab/sentence-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWordEmbeddings.py
executable file
·130 lines (99 loc) · 5.71 KB
/
WordEmbeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from torch import nn, Tensor
from typing import Union, Tuple, List, Iterable, Dict
import logging
import gzip
from tqdm import tqdm
import numpy as np
import os
import json
from ..util import import_from_string, fullname, http_get
from .tokenizer import WordTokenizer, WhitespaceTokenizer
class WordEmbeddings(nn.Module):
def __init__(self, tokenizer: WordTokenizer, embedding_weights, update_embeddings: bool = False, max_seq_length: int = 1000000):
nn.Module.__init__(self)
if isinstance(embedding_weights, list):
embedding_weights = np.asarray(embedding_weights)
if isinstance(embedding_weights, np.ndarray):
embedding_weights = torch.from_numpy(embedding_weights)
num_embeddings, embeddings_dimension = embedding_weights.size()
self.embeddings_dimension = embeddings_dimension
self.emb_layer = nn.Embedding(num_embeddings, embeddings_dimension)
self.emb_layer.load_state_dict({'weight': embedding_weights})
self.emb_layer.weight.requires_grad = update_embeddings
self.tokenizer = tokenizer
self.update_embeddings = update_embeddings
self.max_seq_length = max_seq_length
def forward(self, features):
token_embeddings = self.emb_layer(features['input_ids'])
cls_tokens = None
features.update({'token_embeddings': token_embeddings, 'cls_token_embeddings': cls_tokens, 'input_mask': features['input_mask']})
return features
def get_sentence_features(self, tokens: List[int], pad_seq_length: int):
pad_seq_length = min(pad_seq_length, self.max_seq_length)
tokens = tokens[0:pad_seq_length] #Truncate tokens if needed
input_ids = tokens
sentence_length = len(input_ids)
input_mask = [1] * len(input_ids)
padding = [0] * (pad_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
assert len(input_ids) == pad_seq_length
assert len(input_mask) == pad_seq_length
return {'input_ids': input_ids, 'input_mask': input_mask, 'sentence_lengths': sentence_length}
return {'input_ids': np.asarray(input_ids, dtype=np.int64),
'input_mask': np.asarray(input_mask, dtype=np.int64),
'sentence_lengths': np.asarray(sentence_length, dtype=np.int64)}
def get_word_embedding_dimension(self) -> int:
return self.embeddings_dimension
def tokenize(self, text: str) -> List[int]:
return self.tokenizer.tokenize(text)
def save(self, output_path: str):
with open(os.path.join(output_path, 'wordembedding_config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin'))
self.tokenizer.save(output_path)
def get_config_dict(self):
return {'tokenizer_class': fullname(self.tokenizer), 'update_embeddings': self.update_embeddings, 'max_seq_length': self.max_seq_length}
@staticmethod
def load(input_path: str):
with open(os.path.join(input_path, 'wordembedding_config.json'), 'r') as fIn:
config = json.load(fIn)
tokenizer_class = import_from_string(config['tokenizer_class'])
tokenizer = tokenizer_class.load(input_path)
weights = torch.load(os.path.join(input_path, 'pytorch_model.bin'))
embedding_weights = weights['emb_layer.weight']
model = WordEmbeddings(tokenizer=tokenizer, embedding_weights=embedding_weights, update_embeddings=config['update_embeddings'])
return model
@staticmethod
def from_text_file(embeddings_file_path: str, update_embeddings: bool = False, item_separator: str = " ", tokenizer=WhitespaceTokenizer(), max_vocab_size: int = None):
logging.info("Read in embeddings file {}".format(embeddings_file_path))
if not os.path.exists(embeddings_file_path):
logging.info("{} does not exist, try to download from server".format(embeddings_file_path))
if '/' in embeddings_file_path or '\\' in embeddings_file_path:
raise ValueError("Embeddings file not found: ".format(embeddings_file_path))
url = "https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/"+embeddings_file_path
http_get(url, embeddings_file_path)
embeddings_dimension = None
vocab = []
embeddings = []
with gzip.open(embeddings_file_path, "rt", encoding="utf8") if embeddings_file_path.endswith('.gz') else open(embeddings_file_path, encoding="utf8") as fIn:
iterator = tqdm(fIn, desc="Load Word Embeddings", unit="Embeddings")
for line in iterator:
split = line.rstrip().split(item_separator)
word = split[0]
if embeddings_dimension == None:
embeddings_dimension = len(split) - 1
vocab.append("PADDING_TOKEN")
embeddings.append(np.zeros(embeddings_dimension))
if (len(split) - 1) != embeddings_dimension: # Assure that all lines in the embeddings file are of the same length
logging.error("ERROR: A line in the embeddings file had more or less dimensions than expected. Skip token.")
continue
vector = np.array([float(num) for num in split[1:]])
embeddings.append(vector)
vocab.append(word)
if max_vocab_size is not None and max_vocab_size > 0 and len(vocab) > max_vocab_size:
break
embeddings = np.asarray(embeddings)
tokenizer.set_vocab(vocab)
return WordEmbeddings(tokenizer=tokenizer, embedding_weights=embeddings, update_embeddings=update_embeddings)