-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathexport.py
85 lines (69 loc) · 3.2 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
import sys
sys.path.insert(0, 'src')
import transform
import os
import random
import numpy as np
from PIL import Image
import argparse
parser = argparse.ArgumentParser(description='manual to this script')
parser.add_argument('--gpu', type=str, default='0', help="choose a GPU")
parser.add_argument('--input', type=str, default=None, help="the path of the checkpoint file")
parser.add_argument('--output', type=str, default=None, help="the path to save the .pb file")
parser.add_argument("--generate_cover_image", default='False', action='store_true', help='generate cover image or not')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
def get_coco2014_dataset():
path_dir = os.listdir('data/train2014')
all_coco2014 = []
for file in path_dir:
all_coco2014.append('data/train2014/'+file)
image_list = []
for i in range(20):
image_list.append(all_coco2014[random.randint(0, len(all_coco2014)-1)])
return image_list
def center_crop(image, x, y):
width, height = image.size[0], image.size[1]
crop_side = min(width, height)
width_crop = (width-crop_side)//2
height_crop = (height-crop_side)//2
box = (width_crop, height_crop, width_crop+crop_side, height_crop+crop_side)
image = image.crop(box)
image = image.resize((x, y), Image.ANTIALIAS)
return image
def unpadding(image, padding):
width, height = image.size
box = (padding, padding, width-padding, height-padding)
image = image.crop(box)
return image
def export(ckpt_file, pb_file, generate_cover_image=False):
g = tf.Graph()
with g.as_default():
with tf.Session() as sess:
image_placeholder = tf.placeholder(tf.float32, [1, None, None, 3], name='input')
generated_image = transform.net_v2(image_placeholder)
clip_image = tf.clip_by_value(generated_image, 0, 255, name="output")
cast_image = tf.cast(clip_image, tf.uint8)
saver = tf.train.Saver(tf.global_variables())
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
saver.restore(sess, ckpt_file)
if generate_cover_image == True:
coco2014_list = get_coco2014_dataset()
for idx, filename in enumerate(coco2014_list):
image = Image.open(filename)
image = image.convert('RGB')
image_input = center_crop(image, 960, 960)
image_output = sess.run(cast_image, feed_dict={
image_placeholder: [np.array(image_input)]
})[0]
image = Image.fromarray(image_output)
image = unpadding(image, padding=30)
image = center_crop(image, 512, 512)
image.save(ckpt_file.split("fns")[0]+filename.split("/")[-1])
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, sess.graph_def, output_node_names=['output'])
with tf.gfile.FastGFile(pb_file, mode='wb') as f:
f.write(output_graph_def.SerializeToString())
if __name__ == '__main__':
export(args.input, args.output, args.generate_cover_image)