-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrial_division_multiprocessing.py
99 lines (84 loc) · 3.54 KB
/
trial_division_multiprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
'''
Program Name: trial_division_multiprocessing.py
Author: Thomas Knoefel
Short Description: This program finds the number of prime numbers and the largest prime number within a specified range using the Trial Division method and multiprocessing.
Algorithm: Trial Division
Optimization Method: Multiprocessing
Created on: February 20, 2023
Long Description: This program uses the trial division algorithm to find all prime numbers within a range, optimized with multiprocessing.
'''
import time
from math import isqrt
import multiprocessing
# Function that checks if a given number is prime
def is_prime(n):
if n <= 1:
return False
elif n <= 3:
return True
elif n % 2 == 0:
return False
else:
for i in range(3, isqrt(n) + 1, 2):
if n % i == 0:
return False
return True
# Function to count primes in a given range
def count_primes(start, end):
count = 0
largest_prime = 0
for i in range(start, end):
if is_prime(i):
count += 1
largest_prime = i
return count, largest_prime
# Function for parallel execution of count_primes on a subinterval
def count_primes_parallel(start, end, result_queue):
process_start_time = time.process_time()
num_primes, last_prime = count_primes(start, end)
process_time = time.process_time() - process_start_time
result_queue.put((num_primes, last_prime, process_time * 1000)) # Convert to milliseconds
if __name__ == "__main__":
varMAX = 100000000 # Define the upper limit for the prime search
num_processes = multiprocessing.cpu_count() # Get the number of processors
chunk_size = varMAX // num_processes
result_queue = multiprocessing.Queue()
processes = []
print(f"Number of processors used: {num_processes}")
# Start real-time measurement
begin_real = time.perf_counter()
total_count = 0
largest_prime = 0
max_process_time = 0
# Create and start processes
for i in range(num_processes):
start = 3 + i * chunk_size
end = start + chunk_size
p = multiprocessing.Process(target=count_primes_parallel, args=(start, end, result_queue))
p.start()
processes.append(p)
# Collect results
for i in range(num_processes):
p = processes[i]
p.join()
p_count, p_largest_prime, p_time = result_queue.get()
total_count += p_count
largest_prime = max(largest_prime, p_largest_prime)
max_process_time = max(max_process_time, p_time) # Keep track of the longest process time
# End real-time measurement
end_real = time.perf_counter()
# Calculate durations
duration_real = (end_real - begin_real) * 1000 # Real-time in milliseconds
# Output results
print(f"There are {total_count} prime numbers less than or equal to {varMAX}.")
print(f"The last prime number is {largest_prime}.")
# Convert durations to hh:mm:ss.ms
def format_duration(duration):
hours = int(duration // (3600 * 1000))
minutes = int((duration % (3600 * 1000)) // (60 * 1000))
seconds = int((duration % (60 * 1000)) // 1000)
milliseconds = int(duration % 1000)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
# Output the formatted durations
print(f"Duration (Real Time): {duration_real:.2f} ms ({format_duration(duration_real)})")
print(f"Maximum Process Time: {max_process_time:.2f} ms ({format_duration(max_process_time)})")