Evaluation codes to design quick win MLOps architecture with open sources. All codes are tested on ml-workspace and Visual Studio Code. GCP is used for the evaluation.
- Design Pattern : https://github.com/mercari/ml-system-design-pattern
- ml-workspace : https://github.com/ml-tooling/ml-workspace
- plotly : https://github.com/plotly/plotly_express
- lux : https://github.com/lux-org/lux
- facets : https://github.com/PAIR-code/facets
- Ray Core : https://docs.ray.io/en/latest/walkthrough.html
- Modin : https://docs.ray.io/en/latest/modin/index.html
- Feast : https://docs.feast.dev/
- Tecton : https://www.tecton.ai/blog/what-is-a-feature-store/ (only available on AWS)
- Frameworks (Tensorflow, PyTorch, MXNet, Scikit Learn etc.)
- Ray SGD (TBD)
- Tensorboard
- What-If-Tool : https://pair-code.github.io/what-if-tool/
- keepsake : https://github.com/replicate/keepsake
- ML Metadata
- DVC : https://github.com/iterative/dvc, https://www.analyticsvidhya.com/blog/2021/06/mlops-versioning-datasets-with-git-dvc/
- Kubeflow
- Dockerize tools (TBD)
- cookie-cutter : https://github.com/drivendata/cookiecutter-data-science
- Seldon
- fastapi
- Ray serve : https://docs.ray.io/en/master/serve/index.html#
- Evidently : https://github.com/evidentlyai/evidently
- Remote Kernel : https://github.com/tdaff/remote_ikernel
- slurm : https://slurm.schedmd.com/documentation.html
- https://github.com/awesomedata/awesome-public-datasets
- https://towardsdatascience.com/5-data-science-projects-that-you-can-complete-over-the-weekend-34445b14707d
- https://docs.google.com/document/d/1P_BerGSP5CNzGjGbRqgMrPcNaCmQuKUyodFaG0jlu9I/edit#heading=h.zdus0kibjxax
- https://github.com/NVIDIA-Merlin/gcp-ml-ops
- https://www.bls.gov/cew/downloadable-data-files.htm [good]
- https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy/data [good]
### etc
- https://github.com/dslp/dslp-repo-template
- https://github.com/academic/awesome-datascience
- https://github.com/alteryx/featuretools
- https://github.com/academic/awesome-datascience#data-sets
- https://github.com/visenger/awesome-mlops
- github actions : https://mlops.githubapp.com/examples
- https://neptune.ai/blog/best-mlops-platforms-to-manage-machine-learning-lifecycle
- https://towardsdatascience.com/mlops-practices-for-data-scientists-dbb01be45dd8
- steppy, modelstore, sacred : https://github.com/EthicalML/awesome-production-machine-learning [good]