-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_v2.F90
782 lines (658 loc) · 27.8 KB
/
kernel_v2.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
!----------------
! kernels
!----------------
MODULE my_kernels
IMPLICIT NONE
INTEGER, PARAMETER :: fp = SELECTED_REAL_KIND(15)
REAL(fp), PARAMETER :: ZERO = 0.0_fp
REAL(fp), PARAMETER :: ONE = 1.0_fp
REAL(fp), PARAMETER :: TWO = 2.0_fp
REAL(fp), PARAMETER :: OPTICAL_DEPTH_THRESHOLD = 0.000001_fp
INTEGER, PARAMETER :: MAX_N_LAYERS = 200
INTEGER, PARAMETER :: INVALID_SENSOR = 0
INTEGER, PARAMETER :: RT_ADA = 56
INTEGER, PARAMETER :: MAX_N_ANGLES = 16
INTEGER, PARAMETER :: MAX_N_LEGENDRE_TERMS = 16
INTEGER, PARAMETER :: MAX_N_DOUBLING = 55
INTEGER, PARAMETER :: MAX_N_SOI_ITERATIONS = 75
INTEGER :: N_GPUS
!---- RTV type ---!
TYPE :: RTV_type
INTEGER :: n_Layers = 0 ! Total number of atmospheric layers
INTEGER :: n_Angles = 0 ! Number of angles to be considered
INTEGER :: n_SOI_Iterations = 0 ! Number of SOI iterations
! Planck radiances
REAL(fp) :: Planck_Surface = ZERO
REAL(fp), DIMENSION( 0:MAX_N_LAYERS ) :: Planck_Atmosphere = ZERO
! Quadrature information
REAL(fp), DIMENSION( MAX_N_ANGLES ) :: COS_Angle = ZERO ! Gaussian quadrature abscissa
REAL(fp), DIMENSION( MAX_N_ANGLES ) :: COS_Weight = ZERO ! Gaussian quadrature weights
! Scattering, visible model variables
INTEGER :: n_Streams = 0 ! Number of *hemispheric* stream angles used in RT
!-----------------------------------
! Variables used in the ADA routines
!-----------------------------------
! Flag to indicate the following arrays have all been allocated
LOGICAL :: Is_Allocated = .FALSE.
! Phase function variables
! Forward and backward scattering phase matrices
REAL(fp), ALLOCATABLE :: Pff(:,:,:) ! MAX_N_ANGLES, MAX_N_ANGLES+1, MAX_N_LAYERS
REAL(fp), ALLOCATABLE :: Pbb(:,:,:) ! MAX_N_ANGLES, MAX_N_ANGLES+1, MAX_N_LAYERS
!-----------------------------------
! Variables used in the SOI routines
!-----------------------------------
INTEGER :: Number_SOI_Iter = 0
INTEGER , ALLOCATABLE :: Number_Doubling(:) ! n_Layers
REAL(fp), ALLOCATABLE :: Delta_Tau(:) ! n_Layers
REAL(fp), ALLOCATABLE :: Refl(:,:,:,:) ! n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers
REAL(fp), ALLOCATABLE :: Trans(:,:,:,:) ! n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers
REAL(fp), ALLOCATABLE :: Inv_BeT(:,:,:,:) ! n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers
REAL(fp), ALLOCATABLE :: C1(:,:) ! n_Angles, n_Layers
REAL(fp), ALLOCATABLE :: C2(:,:) ! n_Angles, n_Layers
END TYPE RTV_type
CONTAINS
SUBROUTINE myMATMUL(A, B, C)
!$acc routine vector
REAL(fp), INTENT(IN), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: A, B
REAL(fp), INTENT(OUT), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: C
REAL(fp) :: acc
INTEGER :: I, J, K
!$acc loop collapse(2) private(acc)
DO I = 1, MAX_N_ANGLES
DO J = 1, MAX_N_ANGLES
acc = 0
!$acc loop seq
DO K = 1, MAX_N_ANGLES
acc = acc + A(I,K) * B(K,J)
END DO
C(I, J) = acc
END DO
END DO
END SUBROUTINE myMATMUL
SUBROUTINE myTRANSPOSE(A, At)
!$acc routine vector
REAL(fp), INTENT(IN), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: A
REAL(fp), INTENT(OUT), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: At
INTEGER :: I, J
!$acc loop collapse(2)
DO I = 1, MAX_N_ANGLES
DO J = 1, MAX_N_ANGLES
At(I,J) = A(J,I)
END DO
END DO
END SUBROUTINE myTRANSPOSE
SUBROUTINE myADD(A, B, C)
!$acc routine vector
REAL(fp), INTENT(IN), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: A, B
REAL(fp), INTENT(OUT), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES) :: C
INTEGER :: I, J
!$acc loop collapse(2)
DO I = 1, MAX_N_ANGLES
DO J = 1, MAX_N_ANGLES
C(I,J) = A(I,J) + B(I,J)
END DO
END DO
END SUBROUTINE myADD
SUBROUTINE RTV_Create( &
RTV, &
n_Angles , &
n_Legendre_Terms, &
n_Layers )
! Arguments
TYPE(RTV_type), INTENT(OUT) :: RTV
INTEGER , INTENT(IN) :: n_Angles
INTEGER , INTENT(IN) :: n_Legendre_Terms
INTEGER , INTENT(IN) :: n_Layers
! Local variables
INTEGER :: alloc_stat
! Check input
IF ( n_Angles < 1 .OR. n_Legendre_Terms < 1 .OR. n_Layers < 1 ) RETURN
ALLOCATE( RTV%Pff(n_Angles, n_Angles+1, n_Layers) , &
RTV%Pbb(n_Angles, n_Angles+1, n_Layers) , &
STAT = alloc_stat )
IF ( alloc_stat /= 0 ) RETURN
! Perform the allocation for SOI variables
ALLOCATE( RTV%Number_Doubling(n_Layers), &
RTV%Delta_Tau(n_Layers), &
RTV%Refl(n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers), &
RTV%Trans(n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers), &
RTV%Inv_BeT(n_Angles, n_Angles, 0:MAX_N_DOUBLING, n_Layers), &
RTV%C1(n_Angles, n_Layers), &
RTV%C2(n_Angles, n_Layers), &
STAT = alloc_stat )
IF ( alloc_stat /= 0 ) RETURN
! Set dimensions
RTV%n_Layers = n_Layers
RTV%n_Angles = n_Angles
RTV%n_SOI_Iterations = 0
! Set the allocate flag
RTV%Is_Allocated = .TRUE.
!------ Fill arrays with random values --- !
CALL RANDOM_NUMBER(RTV%Pff)
CALL RANDOM_NUMBER(RTV%Pbb)
RTV%Number_Doubling(:) = MAX_N_DOUBLING
CALL RANDOM_NUMBER(RTV%Delta_Tau)
CALL RANDOM_NUMBER(RTV%Refl)
CALL RANDOM_NUMBER(RTV%Trans)
CALL RANDOM_NUMBER(RTV%Inv_BeT)
CALL RANDOM_NUMBER(RTV%COS_Angle)
CALL RANDOM_NUMBER(RTV%COS_Weight)
CALL RANDOM_NUMBER(RTV%C1)
CALL RANDOM_NUMBER(RTV%C2)
RTV%Refl=RTV%Refl/100.0_fp
RTV%Trans=RTV%Trans/100.0_fp
RTV%Inv_Bet=RTV%Inv_Bet/100.0_fp
!------ Manual deep copy -------!
!$acc enter data copyin(RTV%Pff,RTV%Pbb,RTV%Number_Doubling,RTV%Delta_Tau, &
!$acc RTV%Refl,RTV%Trans,RTV%Inv_BeT,RTV%C1,RTV%C2)
END SUBROUTINE RTV_Create
SUBROUTINE CRTM_Doubling_layer_AD(n_streams, & ! Input, number of streams
NANG, & ! Input, number of angles
KL, & ! Input, number of angles
single_albedo, & ! Input, single scattering albedo
optical_depth, & ! Input, layer optical depth
COS_Angle, & ! Input, COSINE of ANGLES
COS_Weight, & ! Input, GAUSSIAN Weights
ff, & ! Input, Phase matrix (forward part)
bb, & ! Input, Phase matrix (backward part)
Planck_Func, & ! Input, Planck for layer temperature
trans_AD, & ! Input, layer tangent-linear trans
refl_AD, & ! Input, layer tangent-linear refl
source_up_AD, & ! Input, layer tangent-linear source_up
source_down_AD, & ! Input, layer tangent-linear source_down
RTV, & ! Input, structure containing forward results
single_albedo_AD, & ! Output adjoint single scattering albedo
optical_depth_AD, & ! Output AD layer optical depth
ff_AD, & ! Output AD forward Phase matrix
bb_AD, & ! Output AD backward Phase matrix
Planck_Func_AD, & ! Output AD Planck for layer temperature
term1,term2,term3,term4,term5_AD,trans1,trans3,trans4,temp1,temp2,temp3,C1_AD,C2_AD) ! Temporaries
!$acc routine vector
INTEGER, INTENT(IN) :: n_streams,NANG,KL
TYPE(RTV_type), INTENT(IN) :: RTV
REAL(fp), INTENT(IN), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES+1) :: ff,bb
REAL(fp), INTENT(IN), DIMENSION(1:MAX_N_ANGLES) :: COS_Angle, COS_Weight
REAL(fp), INTENT(IN) :: single_albedo,optical_depth,Planck_Func
! Tangent-Linear Part
REAL(fp), INTENT( INOUT ), DIMENSION( 1:MAX_N_ANGLES,1:MAX_N_ANGLES ) :: trans_AD,refl_AD
REAL(fp), INTENT( INOUT ), DIMENSION( 1:MAX_N_ANGLES ) :: source_up_AD,source_down_AD
REAL(fp), INTENT( INOUT ) :: single_albedo_AD
REAL(fp), INTENT( INOUT ) :: optical_depth_AD,Planck_Func_AD
REAL(fp), INTENT(INOUT), DIMENSION(1:MAX_N_ANGLES,1:MAX_N_ANGLES+1) :: ff_AD,bb_AD
! internal variables
REAL(fp), INTENT(OUT),DIMENSION(MAX_N_ANGLES,MAX_N_ANGLES) :: term1,term2,term3,term4,term5_AD
REAL(fp), INTENT(OUT),DIMENSION(MAX_N_ANGLES,MAX_N_ANGLES) :: trans1,trans3,trans4,temp1,temp2,temp3
REAL(fp), INTENT(OUT),DIMENSION(MAX_N_ANGLES) :: C1_AD, C2_AD
REAL(fp) :: s, c
REAL(fp) :: s_AD, c_AD, Delta_Tau_AD
INTEGER :: i,j,L
! Tangent-Linear Beginning
IF( optical_depth < OPTICAL_DEPTH_THRESHOLD ) THEN
trans_AD = ZERO
refl_AD = ZERO
source_up_AD = ZERO
source_down_AD = ZERO
RETURN
ENDIF
!$acc loop reduction(+:Planck_Func_AD)
DO i = NANG, 1, -1
source_up_AD(i) = source_up_AD(i) + source_down_AD(i)
source_down_AD(i) = ZERO
C2_AD(i) = -source_up_AD(i)*Planck_Func
C1_AD(i) = -source_up_AD(i)*Planck_Func
Planck_Func_AD = Planck_Func_AD + (ONE-RTV%C1(i,KL)-RTV%C2(i,KL))*source_up_AD(i)
END DO
! Compute the source function in the up and downward directions.
IF(NANG == (n_Streams+1)) THEN
trans_AD(NANG,NANG)=trans_AD(NANG,NANG)+C1_AD(NANG)
ENDIF
!$acc loop collapse(2)
DO i = NANG, 1, -1
DO j = n_Streams, 1, -1
refl_AD(i,j)=refl_AD(i,j)+C2_AD(i)
trans_AD(i,j)=trans_AD(i,j)+C1_AD(i)
END DO
END DO
!$acc loop seq
DO L = RTV%Number_Doubling(KL), 1, -1
CALL myMATMUL(RTV%Trans(:,:,L-1,KL),RTV%Inv_BeT(:,:,L,KL), term1)
CALL myMATMUL(RTV%Inv_BeT(:,:,L,KL),RTV%Refl(:,:,L-1,KL), term2)
CALL myMATMUL(RTV%Inv_BeT(:,:,L,KL),RTV%Trans(:,:,L-1,KL), term3)
CALL myMATMUL(term2,RTV%Trans(:,:,L-1,KL), term4)
CALL myTRANSPOSE(term1,trans1)
CALL myTRANSPOSE(term3,trans3)
CALL myTRANSPOSE(term4,trans4)
CALL myMATMUL(trans1,trans_AD,temp1)
CALL myMATMUL(temp1,trans3,term5_AD)
CALL myMATMUL(trans_AD,trans3,temp1)
CALL myMATMUL(trans1,trans_AD,temp2)
CALL myADD(temp1,temp2,trans_AD)
CALL myMATMUL(term1,RTV%Refl(:,:,L-1,KL),temp1)
CALL myTRANSPOSE(temp1,temp2)
CALL myMATMUL(temp2,refl_AD,temp1)
CALL myADD(trans_AD,temp1,trans_AD)
CALL myMATMUL(trans1,refl_AD,temp2)
CALL myMATMUL(temp2,trans4,temp1)
CALL myADD(term5_AD,temp1,term5_AD)
CALL myMATMUL(refl_AD,trans4,temp1)
CALL myADD(trans_AD,temp1,trans_AD)
CALL myMATMUL(trans1,refl_AD,temp1)
CALL myTRANSPOSE(RTV%Trans(:,:,L-1,KL),temp3)
CALL myMATMUL(temp1,temp3,temp2)
CALL myADD(refl_AD,temp2,refl_AD)
CALL myTRANSPOSE(RTV%Refl(:,:,L-1,KL),temp3)
CALL myMATMUL(term5_AD,temp3,temp1)
CALL myADD(refl_AD,temp1,refl_AD)
CALL myMATMUL(temp3,term5_AD, temp1)
CALL myADD(refl_AD,temp1,refl_AD)
ENDDO
s = RTV%Delta_Tau(KL) * single_albedo
c_AD = ZERO
s_AD = ZERO
Delta_Tau_AD=ZERO
!$acc loop independent reduction(+:Delta_Tau_AD,s_AD)
DO i = NANG, 1, -1
c = s/COS_Angle(i)
Delta_Tau_AD = Delta_Tau_AD - trans_AD(i,i)/COS_Angle(i)
!$acc loop independent reduction(+:c_AD)
DO j = NANG, 1, -1
c_AD = c_AD + trans_AD(i,j)*ff(i,j)*COS_Weight(j)
ff_AD(i,j)=ff_AD(i,j)+trans_AD(i,j)*c*COS_Weight(j)
c_AD = c_AD + refl_AD(i,j)*bb(i,j)*COS_Weight(j)
bb_AD(i,j)=bb_AD(i,j) + refl_AD(i,j)*c*COS_Weight(j)
END DO
s_AD = s_AD + c_AD/COS_Angle(i)
c_AD = ZERO
ENDDO
Delta_Tau_AD = Delta_Tau_AD + s_AD* single_albedo
single_albedo_AD = single_albedo_AD+RTV%Delta_Tau(KL) * s_AD
optical_depth_AD = optical_depth_AD + Delta_Tau_AD/(TWO**RTV%Number_Doubling(KL))
END SUBROUTINE CRTM_Doubling_layer_AD
!------------------------------------------------------------------
! print_2d_variable
!
! Prints statistics for a 2d state variable
!------------------------------------------------------------------
SUBROUTINE print_2d_variable(name, data)
character(len=*) :: name
real(fp) :: data(:,:)
! Note: Assumed shape array sections always start with index=1 for all
! dimensions
! So we don't have to know start/end indices here
WRITE(*,'(A5, A17,5ES20.10)') "TEST ", name, minval(data), maxval(data), data(1,1), &
data(size(data,1), size(data,2)), &
sqrt(sum(data**2) / size(data))
END SUBROUTINE print_2d_variable
!------------------------------------------------------------------
! print_3d_variable
!
! Prints statistics for a 3d state variable
!------------------------------------------------------------------
SUBROUTINE print_3d_variable(name, data)
character(len=*) :: name
real(fp) :: data(:,:,:)
! Note: Assumed shape array sections always start with index=1 for all dimensions
! So we do not have to know start/end indices here
WRITE(*,'(A5,A17,5ES20.10)') "TEST ", name, minval(data), maxval(data), data(1,1,1), &
data(size(data,1), size(data,2), size(data,3)), &
sqrt(sum(data**2) / size(data))
END SUBROUTINE print_3d_variable
!------------------------------------------------------------------
! print_4d_variable
!
! Prints statistics for a 4d state variable
!------------------------------------------------------------------
SUBROUTINE print_4d_variable(name, data)
character(len=*) :: name
real(fp) :: data(:,:,:,:)
! Note: Assumed shape array sections always start with index=1 for all dimensions
! So we do not have to know start/end indices here
WRITE(*,'(A5,A17,5ES20.10)') "TEST ", name, minval(data), maxval(data), data(1,1,1,1), &
data(size(data,1), size(data,2), size(data,3), size(data,4)), &
sqrt(sum(data**2) / size(data))
END SUBROUTINE print_4d_variable
!------------------------------------------------------------------
! print_5d_variable
!
! Prints statistics for a 5d state variable
!------------------------------------------------------------------
SUBROUTINE print_5d_variable(name, data)
character(len=*) :: name
real(fp) :: data(:,:,:,:,:)
! Note: Assumed shape array sections always start with index=1 for all dimensions
! So we do not have to know start/end indices here
WRITE(*,'(A5,A17,5ES20.10)') "TEST ", name, minval(data), maxval(data), data(1,1,1,1,1), &
data(size(data,1), size(data,2), size(data,3), size(data,4), size(data,5)), &
sqrt(sum(data**2) / size(data))
END SUBROUTINE print_5d_variable
!------------------------------------------------------------------
! print_state
!
! Prints statistics for the kernel state variables
!------------------------------------------------------------------
SUBROUTINE print_state(msg, &
MAX_N_ANGLES, &
N_LAYERS, &
N_PROFILESxCHANNELS, &
Pff_AD, &
Pbb_AD, &
s_Refl_AD, &
s_Trans_AD, &
s_source_UP_AD, &
s_source_DOWN_AD, &
w, &
T_OD, &
w_AD, &
T_OD_AD, &
Planck_Atmosphere_AD, &
RTV)
CHARACTER(LEN=*) :: msg
INTEGER, INTENT(IN) :: MAX_N_ANGLES, N_LAYERS, N_PROFILESxCHANNELS
REAL(fp), INTENT(IN) :: Pff_AD(:,:,:,:)
REAL(fp), INTENT(IN) :: Pbb_AD(:,:,:,:)
REAL(fp), INTENT(IN) :: s_Refl_AD(:,:,:,:)
REAL(fp), INTENT(IN) :: s_Trans_AD(:,:,:,:)
REAL(fp), INTENT(IN) :: s_source_UP_AD(:,:,:)
REAL(fp), INTENT(IN) :: s_source_DOWN_AD(:,:,:)
REAL(fp), INTENT(IN) :: w(:,:)
REAL(fp), INTENT(IN) :: T_OD(:,:)
REAL(fp), INTENT(IN) :: w_AD(:,:)
REAL(fp), INTENT(IN) :: T_OD_AD(:,:)
REAL(fp), INTENT(IN) :: Planck_Atmosphere_AD(:,:)
TYPE(RTV_type), INTENT(IN) :: RTV(:)
INTEGER :: i
REAL(fp), ALLOCATABLE :: temp2d(:,:), temp3d(:,:,:), temp4d(:,:,:,:), temp5d(:,:,:,:,:)
WRITE(*,'(A4)') "TEST"
WRITE(*,'(A5,A117)') "TEST ", repeat("=",117)
WRITE(*,'(A5,A32)') "TEST ", msg
WRITE(*,'(A5,A117)') "TEST ", repeat("=",117)
WRITE(*,'(A5,A17,5A20)') "TEST ", "Variable", "Min", "Max", "First", "Last", "RMS"
WRITE(*,'(A5,A117)') "TEST ", repeat("-",117)
CALL print_4d_variable("Pff_AD", Pff_AD)
CALL print_4d_variable("Pbb_AD", Pbb_AD)
CALL print_4d_variable("s_Refl_AD", s_Refl_AD)
CALL print_4d_variable("s_Trans_AD", s_Trans_AD)
CALL print_3d_variable("s_source_UP_AD", s_source_UP_AD)
CALL print_3d_variable("s_source_DOWN_AD", s_source_DOWN_AD)
CALL print_2d_variable("w", w)
CALL print_2d_variable("T_OD", T_OD)
CALL print_2d_variable("w_AD", w_AD)
CALL print_2d_variable("T_OD_AD", T_OD_AD)
CALL print_2d_variable("Planck_Atmosphere_AD", Planck_Atmosphere_AD)
ALLOCATE(temp4d(N_PROFILESxCHANNELS, MAX_N_ANGLES, MAX_N_ANGLES + 1, N_LAYERS))
DO i = 1, N_PROFILESxCHANNELS
temp4d(i, :, :, :) = RTV(i)%Pff
END DO
CALL print_4d_variable("RTV%Pff", temp4d)
DO i = 1, N_PROFILESxCHANNELS
temp4d(i, :, :, :) = RTV(i)%Pbb
END DO
CALL print_4d_variable("RTV%Pbb", temp4d)
DEALLOCATE(temp4d)
ALLOCATE(temp2d(N_PROFILESxCHANNELS, N_LAYERS))
DO i = 1, N_PROFILESxCHANNELS
temp2d(i, :) = RTV(i)%Delta_Tau
END DO
CALL print_2d_variable("RTV%Delta_Tau", temp2d)
DEALLOCATE(temp2d)
ALLOCATE(temp5d(N_PROFILESxCHANNELS, MAX_N_ANGLES, MAX_N_ANGLES, MAX_N_DOUBLING + 1, N_LAYERS))
DO i = 1, N_PROFILESxCHANNELS
temp5d(i, :, :, :, :) = RTV(i)%Refl
END DO
CALL print_5d_variable("RTV%Refl", temp5d)
DO i = 1, N_PROFILESxCHANNELS
temp5d(i, :, :, :, :) = RTV(i)%Trans
END DO
CALL print_5d_variable("RTV%Trans", temp5d)
DO i = 1, N_PROFILESxCHANNELS
temp5d(i, :, :, :, :) = RTV(i)%Inv_BeT
END DO
CALL print_5d_variable("RTV%Inv_BeT", temp5d)
DEALLOCATE(temp5d)
ALLOCATE(temp2d(N_PROFILESxCHANNELS, MAX_N_ANGLES))
DO i = 1, N_PROFILESxCHANNELS
temp2d(i, :) = RTV(i)%COS_Angle
END DO
CALL print_2d_variable("RTV%COS_Angle", temp2d)
DO i = 1, N_PROFILESxCHANNELS
temp2d(i, :) = RTV(i)%COS_Weight
END DO
CALL print_2d_variable("RTV%COS_Weight", temp2d)
DEALLOCATE(temp2d)
ALLOCATE(temp3d(N_PROFILESxCHANNELS, MAX_N_ANGLES, N_LAYERS))
DO i = 1, N_PROFILESxCHANNELS
temp3d(i, :, :) = RTV(i)%C1
END DO
CALL print_3d_variable("RTV%C1", temp3d)
DO i = 1, N_PROFILESxCHANNELS
temp3d(i, :, :) = RTV(i)%C2
END DO
CALL print_3d_variable("RTV%C2", temp3d)
DEALLOCATE(temp3d)
WRITE(*,'(A5,A117)') "TEST ", repeat("-",117)
WRITE(*,'(A4)') "TEST"
END SUBROUTINE print_state
END MODULE my_kernels
!---------------------
! Driver
!---------------------
PROGRAM test_kernels
USE my_kernels
USE omp_lib
#ifdef _OPENACC
USE openacc
#endif
!------- Test -------!
INTEGER, PARAMETER :: N_LAYERS = MAX_N_LAYERS
INTEGER, PARAMETER :: N_PROFILESxCHANNELS = 100
TYPE(RTV_type), ALLOCATABLE, DIMENSION(:) :: RTV
INTEGER :: k, t, alloc_stat, n_omp_threads, streamid
INTEGER :: N_PROFS_PER_GPU, s, e, gpuid
INTEGER :: count_rate, count_start, count_end
REAL :: elapsed
!---- local arrays --- !
REAL(fp), ALLOCATABLE, DIMENSION( :,:,:,: ) :: Pff_AD,Pbb_AD,s_Refl_AD,s_Trans_AD
REAL(fp), ALLOCATABLE, DIMENSION( :,:,: ) :: s_source_UP_AD,s_source_DOWN_AD
REAL(fp), ALLOCATABLE, DIMENSION(:,:) :: w, T_OD
REAL(fp), ALLOCATABLE, DIMENSION(:,:) :: w_AD, T_OD_AD
REAL(fp), ALLOCATABLE, DIMENSION(:,:) :: Planck_Atmosphere_AD
REAL(fp), DIMENSION(MAX_N_ANGLES,MAX_N_ANGLES) :: term1,term2,term3,term4,term5_AD
REAL(fp), DIMENSION(MAX_N_ANGLES,MAX_N_ANGLES) :: trans1,trans3,trans4,temp1,temp2,temp3
REAL(fp), DIMENSION(MAX_N_ANGLES) :: C1_AD, C2_AD
!---- openmp -----!
!$OMP PARALLEL
!$OMP SINGLE
n_omp_threads = OMP_GET_NUM_THREADS()
!$OMP END SINGLE
!$OMP END PARALLEL
WRITE(6,*)
WRITE(6,'(" Using",i3," OpenMP threads for ",i3," profiles and channels.")') &
n_omp_threads, N_PROFILESxCHANNELS
WRITE(6,'(" N_LAYERS = ",i3,", N_ANGLES =",i3)') &
N_LAYERS, MAX_N_ANGLES
WRITE(6,*)
!----- multi-gpu ---!
#ifdef _OPENACC
N_GPUS = acc_get_num_devices(acc_device_nvidia)
#else
N_GPUS = 0
#endif
WRITE(6,'(" Number of GPUS = ",i3)') N_GPUS
IF (N_GPUS .eq. 0) THEN
N_PROFS_PER_GPU = N_PROFILESxCHANNELS
ELSE
N_PROFS_PER_GPU = (N_PROFILESxCHANNELS + N_GPUS - 1) / N_GPUS
ENDIF
!---- allocate ----!
ALLOCATE(RTV(N_PROFILESxCHANNELS), &
STAT = alloc_stat)
IF ( alloc_stat /= 0 ) STOP
ALLOCATE(Pff_AD(MAX_N_ANGLES, MAX_N_ANGLES+1, N_LAYERS, N_PROFILESxCHANNELS), &
Pbb_AD(MAX_N_ANGLES, MAX_N_ANGLES+1, N_LAYERS, N_PROFILESxCHANNELS), &
s_Refl_AD(MAX_N_ANGLES, MAX_N_ANGLES, N_LAYERS, N_PROFILESxCHANNELS), &
s_Trans_AD(MAX_N_ANGLES, MAX_N_ANGLES, N_LAYERS, N_PROFILESxCHANNELS), &
s_source_UP_AD(MAX_N_ANGLES, N_LAYERS, N_PROFILESxCHANNELS), &
s_source_DOWN_AD(MAX_N_ANGLES, N_LAYERS, N_PROFILESxCHANNELS), &
w(N_LAYERS, N_PROFILESxCHANNELS), &
T_OD(N_LAYERS, N_PROFILESxCHANNELS), &
w_AD(N_LAYERS, N_PROFILESxCHANNELS), &
T_OD_AD(N_LAYERS, N_PROFILESxCHANNELS), &
Planck_Atmosphere_AD(0:N_LAYERS, N_PROFILESxCHANNELS), &
STAT = alloc_stat )
IF ( alloc_stat /= 0 ) STOP
!---- fill arrays with random numbers ----!
PRINT*, "Filling arrays with random values"
CALL RANDOM_NUMBER(Pff_AD)
CALL RANDOM_NUMBER(Pbb_AD)
CALL RANDOM_NUMBER(s_Refl_AD)
CALL RANDOM_NUMBER(s_Trans_AD)
CALL RANDOM_NUMBER(s_source_UP_AD)
CALL RANDOM_NUMBER(s_source_DOWN_AD)
CALL RANDOM_NUMBER(w)
CALL RANDOM_NUMBER(T_OD)
CALL RANDOM_NUMBER(w_AD)
CALL RANDOM_NUMBER(T_OD_AD)
CALL RANDOM_NUMBER(Planck_Atmosphere_AD)
PRINT*, "Finished filling arrays with random values."
!---- fill RTV ----!
DO t = 1, N_PROFILESxCHANNELS
RTV(t)%n_Streams = 6
END DO
!--- Copy data to GPU ---!
#ifdef _OPENACC
DO gpuid = 0, N_GPUS - 1
CALL acc_set_device_num(gpuid,acc_device_nvidia)
s = gpuid * N_PROFS_PER_GPU + 1
e = MIN(N_PROFILESxCHANNELS, s + N_PROFS_PER_GPU - 1)
WRITE(6,'( "GPU=",i2," section: ",i4,":",i4)') gpuid, s, e
!$acc enter data copyin(Pff_AD(:,:,:,s:e),Pbb_AD(:,:,:,s:e),s_Refl_AD(:,:,:,s:e),s_Trans_AD(:,:,:,s:e), &
!$acc s_source_UP_AD(:,:,s:e),s_source_DOWN_AD(:,:,s:e), &
!$acc w(:,s:e), T_OD(:,s:e), w_AD(:,s:e), T_OD_AD(:,s:e), Planck_Atmosphere_AD(:,s:e))
ENDDO
#endif
!$acc wait
!---- create RTV array ----!
!---- manual deepcopy with explicit attach ---- !
!---- For some reason implicit attach does not work ----!
PRINT*, "Creating RTV"
DO t = 1, N_PROFILESxCHANNELS
gpuid = (t - 1) / N_PROFS_PER_GPU
#ifdef _OPENACC
CALL acc_set_device_num(gpuid,acc_device_nvidia)
#endif
CALL RTV_Create( RTV(t), MAX_N_ANGLES, MAX_N_LEGENDRE_TERMS, N_LAYERS )
ENDDO
#ifdef _OPENACC
DO gpuid = 0, N_GPUS - 1
CALL acc_set_device_num(gpuid,acc_device_nvidia)
!$acc enter data copyin(RTV)
ENDDO
#endif
DO t = 1, N_PROFILESxCHANNELS
gpuid = (t - 1) / N_PROFS_PER_GPU
#ifdef _OPENACC
CALL acc_set_device_num(gpuid,acc_device_nvidia)
#endif
!$acc enter data attach(RTV(t)%Pff,RTV(t)%Pbb,RTV(t)%Number_Doubling,RTV(t)%Delta_Tau, &
!$acc RTV(t)%Refl,RTV(t)%Trans,RTV(t)%Inv_BeT,RTV(t)%C1,RTV(t)%C2)
ENDDO
PRINT*, "Finished creating RTV"
!------- Print input state statistics -------!
CALL print_state("Input state", &
MAX_N_ANGLES, &
N_LAYERS, &
N_PROFILESxCHANNELS, &
Pff_AD, &
Pbb_AD, &
s_Refl_AD, &
s_Trans_AD, &
s_source_UP_AD, &
s_source_DOWN_AD, &
w, &
T_OD, &
w_AD, &
T_OD_AD, &
Planck_Atmosphere_AD, &
RTV)
!---- call kernel ----!
PRINT*, "Calling kernel"
CALL SYSTEM_CLOCK (count_rate=count_rate)
CALL SYSTEM_CLOCK (count=count_start)
!$omp parallel do private(t,k,streamid,gpuid, &
!$omp term1,term2,term3,term4,term5_AD, &
!$omp trans1,trans3,trans4,temp1,temp2,temp3,C1_AD,C2_AD)
DO t = 1, N_PROFILESxCHANNELS
streamid = mod(t - 1,n_omp_threads)
gpuid = (t - 1) / N_PROFS_PER_GPU
#ifdef _OPENACC
CALL acc_set_device_num(gpuid,acc_device_nvidia)
#endif
!$acc kernels async(streamid) &
!$acc present(Pff_AD(:,:,:,t),Pbb_AD(:,:,:,t),s_Refl_AD(:,:,:,t),s_Trans_AD(:,:,:,t), &
!$acc s_source_UP_AD(:,:,t),s_source_DOWN_AD(:,:,t), &
!$acc w(:,t), T_OD(:,t), w_AD(:,t), T_OD_AD(:,t), Planck_Atmosphere_AD(:,t))
!$acc loop private(k, &
!$acc term1,term2,term3,term4,term5_AD, &
!$acc trans1,trans3,trans4,temp1,temp2,temp3,C1_AD,C2_AD)
DO k = 1, N_LAYERS
CALL CRTM_Doubling_layer_AD(RTV(t)%n_Streams, RTV(t)%n_Angles, k, w( k, t ), T_OD( k, t ), & !Input
RTV(t)%COS_Angle, RTV(t)%COS_Weight, RTV(t)%Pff( :, :, k ), RTV(t)%Pbb( :, :, k ), & ! Input
RTV(t)%Planck_Atmosphere( k ), & !Input
s_trans_AD( :, :, k, t ), s_refl_AD( :, :, k, t ), s_source_up_AD( :, k, t ), &
s_source_down_AD( :, k, t ), RTV(t), w_AD( k, t ), T_OD_AD( k, t ), Pff_AD( :, :, k, t ), &
Pbb_AD( :, :, k, t ), Planck_Atmosphere_AD( k, t ), &
term1,term2,term3,term4,term5_AD,trans1,trans3,trans4,temp1,temp2,temp3,C1_AD,C2_AD) !Output
ENDDO
!$acc end kernels
ENDDO
!$omp end parallel do
#ifdef _OPENACC
DO gpuid = 0, N_GPUS - 1
CALL acc_set_device_num(gpuid,acc_device_nvidia)
!$acc wait
ENDDO
#endif
CALL SYSTEM_CLOCK (count=count_end)
elapsed = REAL (count_end - count_start) / REAL (count_rate)
PRINT*
PRINT*
PRINT*, "Finished executing kernel in =", elapsed
PRINT*
!------- Print section of output -------!
#ifdef _OPENACC
DO gpuid = 0, N_GPUS - 1
CALL acc_set_device_num(gpuid,acc_device_nvidia)
s = gpuid * N_PROFS_PER_GPU + 1
e = MIN(N_PROFILESxCHANNELS, s + N_PROFS_PER_GPU - 1)
!$acc update self(s_trans_AD(:,:,:,s:e))
!$acc update self(s_refl_AD(:,:,:,s:e))
!$acc update self(s_source_up_AD(:,:,s:e))
!$acc update self(s_source_down_AD(:,:,s:e))
!$acc update self(w(:,s:e))
!$acc update self(T_OD(:,s:e))
!$acc update self(w_AD(:,s:e))
!$acc update self(T_OD_AD(:,s:e))
!$acc update self(Pff_AD(:,:,:,s:e))
!$acc update self(Pbb_AD(:,:,:,s:e))
!$acc update self(Planck_Atmosphere_AD(:,s:e))
ENDDO
#endif
PRINT*, s_trans_AD(:,1,1,1)
!------- Print output state statistics -------!
CALL print_state("Output state", &
MAX_N_ANGLES, &
N_LAYERS, &
N_PROFILESxCHANNELS, &
Pff_AD, &
Pbb_AD, &
s_Refl_AD, &
s_Trans_AD, &
s_source_UP_AD, &
s_source_DOWN_AD, &
w, &
T_OD, &
w_AD, &
T_OD_AD, &
Planck_Atmosphere_AD, &
RTV)
END PROGRAM test_kernels