diff --git a/sols.tex b/sols.tex index 988f55b..2adbb8a 100755 --- a/sols.tex +++ b/sols.tex @@ -15,7 +15,7 @@ \usepackage{tabls} %TCIDATA{OutputFilter=latex2.dll} %TCIDATA{Version=5.50.0.2960} -%TCIDATA{LastRevised=Wednesday, May 25, 2016 13:06:05} +%TCIDATA{LastRevised=Wednesday, May 25, 2016 13:28:10} %TCIDATA{SuppressPackageManagement} %TCIDATA{} %TCIDATA{} @@ -13643,11 +13643,12 @@ \subsection{Prelude to Laplace expansion} From (\ref{eq.det.eq.2}), we obtain% \begin{align*} -\det A & =\sum_{\sigma\in S_{n}}\left( -1\right) ^{\sigma}\underbrace{\prod -_{i=1}^{n}a_{i,\sigma\left( i\right) }}_{=\left( \prod_{i=1}^{n-1}% -a_{i,\sigma\left( i\right) }\right) a_{n,\sigma\left( n\right) }}% -=\sum_{\sigma\in S_{n}}\left( -1\right) ^{\sigma}\left( \prod_{i=1}% -^{n-1}a_{i,\sigma\left( i\right) }\right) a_{n,\sigma\left( n\right) }\\ +\det A & =\sum_{\sigma\in S_{n}}\left( -1\right) ^{\sigma}% +\underbrace{\prod_{i=1}^{n}a_{i,\sigma\left( i\right) }}_{=\left( +\prod_{i=1}^{n-1}a_{i,\sigma\left( i\right) }\right) a_{n,\sigma\left( +n\right) }}=\sum_{\sigma\in S_{n}}\left( -1\right) ^{\sigma}\left( +\prod_{i=1}^{n-1}a_{i,\sigma\left( i\right) }\right) a_{n,\sigma\left( +n\right) }\\ & =\sum_{\substack{\sigma\in S_{n};\\\sigma\left( n\right) =n}}\left( -1\right) ^{\sigma}\left( \prod_{i=1}^{n-1}a_{i,\sigma\left( i\right) }\right) \underbrace{a_{n,\sigma\left( n\right) }}_{\substack{=a_{n,n}% @@ -13658,7 +13659,7 @@ \subsection{Prelude to Laplace expansion} (\ref{pf.thm.laplace.pre.1}))}}}\\ & \ \ \ \ \ \ \ \ \ \ \left( \text{since every }\sigma\in S_{n}\text{ satisfies either }\sigma\left( n\right) =n\text{ or }\sigma\left( n\right) -\neq n\text{ (but not both)}\right) \\ +\neq n\text{ (but not both)}\right) \\ & =\sum_{\substack{\sigma\in S_{n};\\\sigma\left( n\right) =n}}\left( -1\right) ^{\sigma}\left( \prod_{i=1}^{n-1}a_{i,\sigma\left( i\right) }\right) a_{n,n}+\underbrace{\sum_{\substack{\sigma\in S_{n};\\\sigma\left( @@ -13686,14 +13687,14 @@ \subsection{Prelude to Laplace expansion} Assume that% \begin{equation} a_{i,n}=0\ \ \ \ \ \ \ \ \ \ \text{for every }i\in\left\{ 1,2,\ldots -,n-1\right\} .\label{eq.cor.laplace.pre.col.ass}% +,n-1\right\} . \label{eq.cor.laplace.pre.col.ass}% \end{equation} Then, $\det A=a_{n,n}\cdot\det\left( \left( a_{i,j}\right) _{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) $. \end{corollary} \begin{proof} -[Proof of Corollary \ref{cor.laplace.pre.col}.] We have $n-1\in\mathbb{N}$ +[Proof of Corollary \ref{cor.laplace.pre.col}.]We have $n-1\in\mathbb{N}$ (since $n$ is a positive integer). We have $A=\left( a_{i,j}\right) _{1\leq i\leq n,\ 1\leq j\leq n}$, and thus @@ -13705,7 +13706,8 @@ \subsection{Prelude to Laplace expansion} $a_{i,j}$) yields \begin{equation} \det\left( A^{T}\right) =a_{n,n}\cdot\det\left( \left( a_{j,i}\right) -_{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) .\label{pf.cor.laplace.pre.col.1}% +_{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) . +\label{pf.cor.laplace.pre.col.1}% \end{equation} @@ -13736,12 +13738,12 @@ \subsection{Prelude to Laplace expansion} Now,% \begin{align*} -\det A & =\det\left( A^{T}\right) =a_{n,n}\cdot\underbrace{\det\left( +\det A & =\det\left( A^{T}\right) =a_{n,n}\cdot\underbrace{\det\left( \left( a_{j,i}\right) _{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) }% _{=\det\left( \left( a_{i,j}\right) _{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) }\ \ \ \ \ \ \ \ \ \ \left( \text{by -(\ref{pf.cor.laplace.pre.col.1})}\right) \\ -& =a_{n,n}\cdot\det\left( \left( a_{i,j}\right) _{1\leq i\leq n-1,\ 1\leq +(\ref{pf.cor.laplace.pre.col.1})}\right) \\ +& =a_{n,n}\cdot\det\left( \left( a_{i,j}\right) _{1\leq i\leq n-1,\ 1\leq j\leq n-1}\right) . \end{align*} This proves Corollary \ref{cor.laplace.pre.col}. @@ -22050,7 +22052,10 @@ \subsection{\label{sect.desnanot}The Desnanot-Jacobi identity} \begin{proof} [Proof of Lemma \ref{lem.desnanot.AB.tech}.]We have $n-1\in\mathbb{N}$ (since -$n$ is a positive integer). +$n$ is a positive integer). Also, $u