-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroth1alt.tex
executable file
·10412 lines (9613 loc) · 525 KB
/
groth1alt.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% -------------------------------------------------------------
% NOTE ON THE DETAILED AND SHORT VERSIONS:
% -------------------------------------------------------------
% This paper comes in two versions, a detailed and a short one.
% The short version should be more than sufficient for any
% reasonable use; the detailed one was written purely to
% convince the author of its correctness.
% To switch between the two versions, find the line containing
% "\newenvironment{noncompile}{}{}" in this LaTeX file.
% Look at the two lines right beneath this line.
% To compile the detailed version, they should be as follows:
% \includecomment{verlong}
% \excludecomment{vershort}
% To compile the short version, they should be as follows:
% \excludecomment{verlong}
% \includecomment{vershort}
% As a rule, the line
% \excludecomment{noncompile}
% should stay as it is.
% -------------------------------------------------------------
% NOTES ON SOME HACKS USED IN THIS FILE:
% -------------------------------------------------------------
% One of my pet peeves with amsthm is its use of italics in the theorem and
% proposition environments; this makes math and text indistinguishable in said
% enviroments. To avoid this, I redefine the enviroments to use the standard
% font and to use a hanging indent, along with a bold vertical bar to its
% left, to distinguish these environments from surrounding text. (Along with
% the advantage of distinguishing math from text, this also allows nesting
% several such environments inside each other, like a definition inside a
% remark. I'm not sure how good of an idea this is, though. There are also
% downsides related to the hanging indentation, such as footnotes out of it
% being painful to do right.) This is done starting from the line
% \theoremstyle{definition}
% and until the line
% {\end{leftbar}\end{exmp}}
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{framed}
\usepackage{amsmath}
\usepackage{comment}
\usepackage{needspace}
\usepackage{color}
\usepackage{hyperref}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{amsthm}
\usepackage{ytableau}
\usepackage{tabu}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Monday, June 08, 2015 22:39:34}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
%\newtheorem{quest}[theo]{TODO}
%\newenvironment{todo}[1][]
%{\begin{quest}[#1]\begin{leftbar}}
%{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exmp}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\newenvironment{obsolete}{}{}
\newenvironment{todo}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\excludecomment{obsolete}
\excludecomment{todo}
\newcommand{\kk}{\mathbf{k}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\ev}{\operatorname{ev}}
\newcommand{\Comp}{\operatorname{Comp}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\Nplus}{\mathbb{N}_{+}}
\newcommand{\NN}{\mathbb{N}}
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\setlength\textheight{22.5cm}
\setlength\textwidth{15cm}
\ihead{Refined dual stable Grothendieck polynomials}
\ohead{\today}
\begin{document}
\title{Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions}
\author{Pavel Galashin, Darij Grinberg, and Gaku Liu}
\date{alternative version\footnote{This version of the paper is the closest
to its original (written back in January 2015). It has the most details and
contains an explicit statement and proof of the diamond lemma, as well as
an application thereof which was omitted from the later versions of the
paper.}\ , \today}
\maketitle
\begin{abstract}
The dual stable Grothendieck polynomials are a deformation of
the Schur functions, originating in the study of the $K$-theory of the
Grassmannian. We generalize these polynomials by introducing a
countable family of additional parameters, and we prove that this
generalization still defines symmetric functions. For this fact, we
give two self-contained proofs, one of which constructs a family of
involutions on the set of reverse plane partitions generalizing the
Bender-Knuth involutions on semistandard tableaux, whereas the other
classifies the structure of reverse plane partitions with entries $1$
and $2$.
\end{abstract}
\section{Introduction}
Thomas Lam and Pavlo Pylyavskyy, in \cite[\S 9.1]{LamPyl}, (and earlier Mark
Shimozono and Mike Zabrocki in unpublished work of 2003) studied \textit{dual
stable Grothendieck polynomials}, a deformation (in a sense) of the Schur
functions. Let us briefly recount their definition.\footnote{All definitions
that will be made in this introduction are provisional. Every notion that will
be used in the paper is going to be defined in more detail and precision in
one of the sections below; thus, a reader not already familiar with Schur
functions and partitions should start reading from Section
\ref{sect.notations} on.}
Let $\lambda/\mu$ be a skew partition. The Schur function $s_{\lambda/\mu}$ is
a multivariate generating function for the semistandard tableaux of shape
$\lambda/\mu$. In the same vein, the dual stable Grothendieck
polynomial\footnote{The word \textquotedblleft polynomial\textquotedblright%
\ is a stretch: $g_{\lambda/\mu}$ is a bounded-degree power series in
infinitely many indeterminates (like $s_{\lambda/\mu}$).} $g_{\lambda/\mu}$ is
a generating function for the reverse plane partitions of shape $\lambda/\mu$;
these, unlike semistandard tableaux, are only required to have their entries
increase \textit{weakly} down columns (and along rows). More precisely,
$g_{\lambda/\mu}$ is a formal power series in countably many commuting
indeterminates $x_{1},x_{2},x_{3},\ldots$ (over an arbitrary commutative ring
$\mathbf{k}$) defined by%
\[
g_{\lambda/\mu}=\sum_{\substack{T\text{ is a reverse plane}\\\text{partition
of shape }\lambda/\mu}}\mathbf{x}^{\operatorname*{ircont}\left( T\right) },
\]
where $\mathbf{x}^{\operatorname*{ircont}\left( T\right) }$ is the monomial
$x_{1}^{a_{1}}x_{2}^{a_{2}}x_{3}^{a_{3}}\cdots$ whose $i$-th exponent $a_{i}$
is the number of columns of $T$ containing the entry $i$. As proven in
\cite[\S 9.1]{LamPyl}, this power series $g_{\lambda/\mu}$ is a symmetric
function (albeit, unlike $s_{\lambda/\mu}$, an inhomogeneous one in general).
Lam and Pylyavskyy connect the $g_{\lambda/\mu}$ to the (more familiar)
\textit{stable Grothendieck polynomials} $G_{\lambda/\mu}$ (via a duality
between the symmetric functions and their completion, which explains the name
of the $g_{\lambda/\mu}$; see \cite[\S 9.4]{LamPyl}) and to the $K$-theory of
Grassmannians (\cite[\S 9.5]{LamPyl}).
We devise a common generalization of the dual stable Grothendieck polynomial
$g_{\lambda/\mu}$ and the classical skew Schur function $s_{\lambda/\mu}$.
Namely, if $t_{1},t_{2},t_{3},\ldots$ are countably many fixed elements of the
base ring $\mathbf{k}$ (e.g., polynomial indeterminates, or integers), then we
set%
\[
\widetilde{g}_{\lambda/\mu}=\sum_{\substack{T\text{ is a reverse
plane}\\\text{partition of shape }\lambda/\mu}}\mathbf{t}^{\operatorname*{ceq}%
\left( T\right) }\mathbf{x}^{\operatorname*{ircont}\left( T\right) },
\]
where $\mathbf{t}^{\operatorname*{ceq}\left( T\right) }$ is the product
$t_{1}^{b_{1}}t_{2}^{b_{2}}t_{3}^{b_{3}}\cdots$ whose $i$-th exponent $b_{i}$
is the number of cells in the $i$-th row of $T$ whose entry equals the entry
of their neighbor cell directly below them. This $\widetilde{g}_{\lambda/\mu}$
becomes $g_{\lambda/\mu}$ when all the $t_{i}$ are set to $1$, and becomes
$s_{\lambda/\mu}$ when all the $t_{i}$ are set to $0$; but keeping the $t_{i}$
arbitrary offers infinitely many degrees of freedom which are so far
unexplored. Our main result, Theorem \ref{thm.gtilde.symm}, states that
$\widetilde{g}_{\lambda/\mu}$ is a symmetric function (in the $x_{1}%
,x_{2},x_{3},\ldots$).
We prove this result (thus obtaining a new proof of \cite[Theorem 9.1]%
{LamPyl}) first using an elaborate generalization of the classical
Bender-Knuth involutions to reverse plane partitions; these generalized
involutions are constructed using a form of the \textit{diamond lemma} (Lemma
\ref{lem.diamond}).
Then, we prove it for a second time by analyzing the structure of reverse
plane partitions whose entries lie in $\left\{1, 2\right\}$. The second
proof reflects back on the first, in particular providing an
alternative definition of the generalized Bender-Knuth involutions
constructed in the first proof, and showing that these involutions
are (in a sense) ``the only reasonable choice''.
We notice that both our proofs are explicitly bijective, unlike
the proof of \cite[Theorem 9.1]{LamPyl} which relies on computations
in an algebra of operators.
The present paper is organized as follows: In Section \ref{sect.notations}, we
recall classical definitions and introduce notations pertaining to
combinatorics and symmetric functions. In Section \ref{sect.def}, we define
the refined dual stable Grothendieck polynomials $\widetilde{g}_{\lambda/\mu}$, state
our main result (that they are symmetric functions), and do the first steps of
its proof (by reducing it to a purely combinatorial statement about the
existence of an involution with certain properties). In Section
\ref{sect.diamond}, we state and (for the sake of completeness) prove the
version of the diamond lemma we need, and we digress to give an elementary
application of it that serves to demonstrate its use. In Section
\ref{sect.proof}, we prove our main result by constructing the required
involution using the diamond lemma. In Section \ref{sect.BKclassical}, we
recapitulate the definition of the classical Bender-Knuth involution, and
sketch the proof that our involution is a generalization of the latter.
Finally, in Section \ref{sect.structure} we study the structure of
reverse plane partitions with entries belonging to $\left\{1, 2\right\}$,
which (in particular) gives us an explicit formula for the
$\mathbf{t}$-coefficients of
$\widetilde{g}_{\lambda/\mu}(x_1,x_2,0,0,\dots;\mathbf{t})$,
and shines a new light on the involution constructed in
Section \ref{sect.proof}
(also showing that it is the unique involution that shares certain natural
properties with the classical Bender-Knuth involutions).
\begin{todo}
\begin{itemize}
\item More reasons why the reader should
care about dual stable Grothendieck polynomials?
\item What I wrote about $K$-theory is rather shallow. More details?
More specifically, and interestingly, I am wondering if our $\widetilde{g}%
_{\lambda/\mu}$ aren't K-theoretical classes of something multigraded (toric
structure on the Grassmannian? there are two sides from which we can multiply
a matrix by a diagonal matrix, and even if we \textquotedblleft use
up\textquotedblright\ one for taking \textquotedblleft
characters\textquotedblright, the other one is still there).
\end{itemize}
\end{todo}
\subsection{Acknowledgments}
We owe our familiarity with dual stable Grothendieck polynomials to Richard
Stanley. We thank Alexander Postnikov for providing context and motivation,
and Thomas Lam and Pavlo Pylyavskyy for interesting conversations.
\begin{todo}
Keep this up to date.
\end{todo}
\section{\label{sect.notations}Notations and definitions}
Let us begin by defining our notations (including some standard conventions
from algebraic combinatorics).
\subsection{Partitions and tableaux}
We set $\mathbb{N}=\left\{ 0,1,2,\ldots\right\} $ and $\mathbb{N}%
_{+}=\left\{ 1,2,3,\ldots\right\} $. A \textit{weak composition} will mean a
sequence $\left( \alpha_{1},\alpha_{2},\alpha_{3},\ldots\right)
\in\mathbb{N}^{\mathbb{N}_{+}}$ of nonnegative integers such that all but
finitely many $i\in\mathbb{N}_{+}$ satisfy $\alpha_{i}=0$. Given a weak
composition $\alpha=\left( \alpha_{1},\alpha_{2},\alpha_{3},\ldots\right) $,
we denote the sum $\alpha_{1}+\alpha_{2}+\alpha_{3}+\cdots$ (which is finite
and an element of $\mathbb{N}$) by $\left\vert \alpha\right\vert $ and call it
the \textit{size} of $\alpha$. Given a weak composition $\alpha$ and a
positive integer $i$, we let $\alpha_{i}$ denote the $i$-th entry of $\alpha$
(so that every weak composition $\alpha$ automatically satisfies
$\alpha=\left( \alpha_{1},\alpha_{2},\alpha_{3},\ldots\right) $).
A \textit{partition} means a weak composition $\left( \alpha_{1},\alpha
_{2},\alpha_{3},\ldots\right) $ satisfying $\alpha_{1}\geq\alpha_{2}%
\geq\alpha_{3}\geq\cdots$. We identify every partition $\left( \alpha
_{1},\alpha_{2},\alpha_{3},\ldots\right) $ with the (truncated) sequence
$\left( \alpha_{1},\alpha_{2},\ldots,\alpha_{m}\right) $ whenever $m$ is a
nonnegative integer such that $\alpha_{m+1}=\alpha_{m+2}=\alpha_{m+3}%
=\cdots=0$. In particular, the partition $\left( 0,0,0,\ldots\right) $ is
thus identified with the empty sequence $\left( {}\right) $ (but also, for
example, with $\left( 0,0,0\right) $). We denote the latter partition by
$\varnothing$, and call it the \textit{empty partition}.
We let $\operatorname*{Par}$ denote the set of all partitions.
The \textit{Young diagram}\footnote{also known as the \textit{Ferrers
diagram}} of a partition $\lambda$ is defined to be the subset $\left\{
\left( i,j\right) \in\mathbb{N}_{+}^{2}\ \mid\ j\leq\lambda_{i}\right\} $
of $\mathbb{N}_{+}^{2}$. It is denoted by $Y\left( \lambda\right) $, and has
size $\left\vert Y\left( \lambda\right) \right\vert =\lambda_{1}+\lambda
_{2}+\lambda_{3}+\cdots=\left\vert \lambda\right\vert $.
We draw every subset of $\mathbb{N}_{+}^{2}$ (for example, the Young diagram
of a partition) as a set of boxes in the plane, according to the following
convention (known as the \textit{English notation}, or also as the
\textit{matrix notation}): We imagine an infinite table, whose rows are
labelled $1,2,3,\ldots$ (from left to right) and whose columns are labelled
$1,2,3,\ldots$ as well (from top to bottom). We represent every element
$\left( i,j\right) $ of $\mathbb{N}_{+}^{2}$ as a box in this table --
namely, as the box at the intersection of row $i$ with column $j$. In order to
draw a subset $Z$ of $\mathbb{N}_{+}^{2}$, we simply chart (the borders of)
the boxes corresponding to all the $\left( i,j\right) \in Z$. For instance,
the Young diagram of the partition $\left( 4,2,1\right) $ is the subset
$\left\{ \left( 1,1\right) ,\left( 1,2\right) ,\left( 1,3\right)
,\left( 1,4\right) ,\left( 2,1\right) ,\left( 2,2\right) ,\left(
3,1\right) \right\} $ of $\mathbb{N}_{+}^{2}$, and we draw it as $%
%TCIMACRO{\TeXButton{y}{\ydiagram{0+4,0+2,0+1}}}%
%BeginExpansion
\ydiagram{0+4,0+2,0+1}%
%EndExpansion
$. We refer to elements of $\mathbb{N}_{+}^{2}$ as \textit{cells} (since we
draw them as boxes in the plane). (Our convention for drawing Young diagrams
is identical with that in \cite{Fulton97} and in \cite{GriRei15}.)
If $\mu$ and $\lambda$ are two partitions, then we say that $\mu
\subseteq\lambda$ if and only if every $i\in\mathbb{N}_{+}$ satisfies $\mu
_{i}\leq\lambda_{i}$. Equivalently, $\mu\subseteq\lambda$ if and only if
$Y\left( \mu\right) \subseteq Y\left( \lambda\right) $. This defines a
partial order $\subseteq$ on the set $\operatorname*{Par}$ of all partitions.
A \textit{skew partition} shall denote a pair $\left( \mu,\lambda\right) $
of two partitions $\mu$ and $\lambda$ satisfying $\mu\subseteq\lambda$; this
pair will also be denoted by $\lambda/\mu$. Given a skew partition
$\lambda/\mu$, we define the \textit{(skew) Young diagram} $Y\left(
\lambda/\mu\right) $ of this skew partition to be the subset $Y\left(
\lambda\right) \setminus Y\left( \mu\right) $ of $\mathbb{N}_{+}^{2}$.
Again, this Young diagram is drawn as above; for instance, the Young diagram
of $\left( 4,3,1\right) /\left( 2,1\right) $ is $%
%TCIMACRO{\TeXButton{y}{\ydiagram{2+2,2+1,0+1}}}%
%BeginExpansion
\ydiagram{2+2,2+1,0+1}%
%EndExpansion
$.
A subset $Z$ of $\mathbb{N}_{+}^{2}$ is said to be \textit{convex} if it has
the following property: If $\left( i,j\right) \in Z$, $\left( i^{\prime
},j^{\prime}\right) \in\mathbb{N}_{+}^{2}$ and $\left( i^{\prime\prime
},j^{\prime\prime}\right) \in Z$ are such that $i\leq i^{\prime}\leq
i^{\prime\prime}$ and $j\leq j^{\prime}\leq j^{\prime\prime}$, then
\begin{equation}
\left( i^{\prime},j^{\prime}\right) \in Z. \label{eq.convex}%
\end{equation}
It is clear that the Young diagram $Y\left( \lambda/\mu\right) $ is convex
whenever $\lambda/\mu$ is a skew partition. It is easy to show that,
conversely, every finite convex subset of $\mathbb{N}_{+}^{2}$ has the form
$Y\left( \lambda/\mu\right) $ for some skew partition $\lambda/\mu$.
If $Z$ is a subset of $\mathbb{N}_{+}^{2}$ (for instance, a Young diagram),
then a \textit{filling} of $Z$ means a map $T:Z\rightarrow\mathbb{N}_{+}$.
Such a filling can be visually represented by drawing the elements of $Z$ as
boxes (following the convention above) and, for every $c\in Z$, inserting the
value $T\left( c\right) $ into the box corresponding to $c$. For instance, $%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{centertableaux}
%\begin{ytableau}
%3 & 2 \\
%4 \\
%2
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{centertableaux}
\begin{ytableau}
3 & 2 \\
4 \\
2
\end{ytableau}%
%EndExpansion
$ is one possible filling of $Y\left( \left( 2,1,1\right) \right) $;
formally speaking, it is the map $Y\left( \left( 2,1,1\right) \right)
\rightarrow\mathbb{N}_{+}$ which sends $\left( 1,1\right) $, $\left(
1,2\right) $, $\left( 2,1\right) $ and $\left( 3,1\right) $ to $3$, $2$,
$4$ and $2$, respectively. When $T$ is a filling of $Z$ and when $c$ is a cell
in $Z$, we refer to the integer $T\left( c\right) \in\mathbb{N}_{+}$ as the
\textit{entry} of $T$ in the cell $c$. For varying $c$, these integers are
called the \textit{entries} of $T$.
Given a finite convex subset $Z$ of $\mathbb{N}_{+}^{2}$, we define a
\textit{reverse plane partition of shape }$Z$ to be a filling $T:Z\rightarrow
\mathbb{N}_{+}^{2}$ of $Z$ satisfying the following two requirements:
\begin{itemize}
\item The entries of $T$ are \textit{weakly increasing along rows} (speaking
in terms of the picture). In more precise terms: If $\left( i,j\right) $ and
$\left( i,j^{\prime}\right) $ are two elements of $Z$ such that
$j<j^{\prime}$, then $T\left( i,j\right) \leq T\left( i,j^{\prime}\right)
$.
\item The entries of $T$ are \textit{weakly increasing down columns}. In more
precise terms: If $\left( i,j\right) $ and $\left( i^{\prime},j\right) $
are two elements of $Z$ such that $i<i^{\prime}$, then $T\left( i,j\right)
\leq T\left( i^{\prime},j\right) $.
\end{itemize}
Generally, a \textit{reverse plane partition} is defined to be a map which is
a reverse plane partition of shape $Z$ for some finite convex subset $Z$ of
$\mathbb{N}_{+}^{2}$. Notice that $Z$ is uniquely determined by the map (in
fact, it is the domain of the map).
We shall abbreviate the term \textquotedblleft reverse plane
partition\textquotedblright\ as \textquotedblleft\textit{rpp}%
\textquotedblright. For instance, $%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& 3 & 3 \\
%2 & 3 \\
%3 & 4
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& 3 & 3 \\
2 & 3 \\
3 & 4
\end{ytableau}%
%EndExpansion
$ is an rpp of shape $Y\left( \left( 3,2,2\right) /\left( 1\right)
\right) $.
A well-known class of rpps are the \textit{semistandard tableaux} (also known
as column-strict tableaux). To define this class, it is enough to change
\textquotedblleft weakly increasing down columns\textquotedblright\ into
\textquotedblleft strictly increasing down columns\textquotedblright\ (and,
correspondingly, change \textquotedblleft$T\left( i,j\right) \leq T\left(
i^{\prime},j\right) $\textquotedblright\ into \textquotedblleft$T\left(
i,j\right) <T\left( i^{\prime},j\right) $\textquotedblright) in the above
definition of an rpp. For instance, $%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& 3 & 3 \\
%2 & 3 \\
%3 & 4
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& 3 & 3 \\
2 & 3 \\
3 & 4
\end{ytableau}%
%EndExpansion
$ is not a semistandard tableau due to having two $3$'s in its second column,
but $%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& 3 & 3 \\
%2 & 4 \\
%3 & 7
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& 3 & 3 \\
2 & 4 \\
3 & 7
\end{ytableau}%
%EndExpansion
$ is a semistandard tableau. Semistandard tableaux have been studied for
decades; an exposition of their properties and applications can be found in
Fulton's \cite{Fulton97}.
\begin{vershort}
\begin{remark}
Let $\lambda/\mu$ be a skew partition. What we call a semistandard tableau of
shape $Y\left( \lambda/\mu\right) $ is usually called a \textit{semistandard
tableau of shape }$\lambda/\mu$. (However, unlike the ``semistandard
tableaux'' defined by some other authors, our semistandard tableaux of shape
$Y\left( \lambda/ \mu\right) $ do not ``store'' the skew partition $\lambda/
\mu$ as part of their data.)
\end{remark}
\end{vershort}
\begin{noncompile}
[Here is some older writing which I have commented out because it is too
long and rather irrelevant to this paper.]
However, there is a minor discrepancy between
the meaning of \textquotedblleft semistandard tableau\textquotedblright\ in
this paper and the meaning of \textquotedblleft semistandard
tableau\textquotedblright\ in some other literature: Namely, for us, a
\textquotedblleft semistandard tableau\textquotedblright\ is just a filling of
a finite convex subset $Z$ of $\mathbb{N}_{+}^{2}$ satisfying certain
properties, whereas for some other authors, a semistandard tableau also
\textquotedblleft remembers\textquotedblright\ a skew partition $\lambda/\mu$
(called its \textquotedblleft shape\textquotedblright) satisfying $Z=Y\left(
\lambda/\mu\right) $. This does make a difference, because every finite
convex subset $Z$ of $\mathbb{N}_{+}^{2}$ can be written in the form $Y\left(
\lambda/\mu\right) $, but not uniquely, and thus one and the same filling of
one and the same subset $Z$ can have different skew partitions $\lambda/\mu$
assigned to it. For us, however, the difference does not matter.
\end{noncompile}
\begin{verlong}
\begin{remark}
Our definition of \textquotedblleft semistandard tableau\textquotedblright%
\ differs mildly from that used in some papers on algebraic combinatorics.
Namely, combinatorialists often define a \textquotedblleft semistandard
tableau\textquotedblright\ to be a triple $\left( \lambda,\mu,T\right) $,
where $\lambda/\mu$ is a skew partition and where $T$ is what we call a
semistandard tableau $T$ of shape $Y\left( \lambda/\mu\right) $. The
parameters $\lambda$ and $\mu$ cannot always be uniquely reconstructed from
$T$ (since, e.g., we have $Y\left( \left( 2,1\right) /\left( 2\right)
\right) =Y\left( \left( 1,1\right) /\left( 1\right) \right) $), and it
makes sense to explicitly carry them around when studying certain algorithms
such as jeu de taquin and Robinson-Schensted insertion (although, of course,
they play a role subordinate to that of $T$, and one usually refers to $T$ as
the tableau). However, for what we are going to do in this paper, our
definition is just as suitable.
Let $\lambda/\mu$ be a skew partition. What we call a semistandard tableau of
shape $Y\left( \lambda/\mu\right) $ is usually called a \textit{semistandard
tableau of shape }$\lambda/\mu$ (except that, as explained above, many
combinatorialists prefer to keep $\lambda$ and $\mu$ as part of the data).
\end{remark}
\end{verlong}
\subsection{Symmetric functions}
We now come to the algebraic part of our definitions.
\begin{vershort}
We let $\mathbf{k}$ be an arbitrary commutative ring with unity.\footnote{Many
authors, such as those of \cite{LamPyl}, set $\mathbf{k}=\mathbb{Z}$.} We
consider the ring $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right]
\right] $ of formal power series in countably many indeterminates
$x_{1},x_{2},x_{3},\ldots$. Given a weak composition $\alpha$, we let
$\mathbf{x}^{\alpha}$ be the monomial $x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}%
}x_{3}^{\alpha_{3}}\cdots$.
\end{vershort}
\begin{verlong}
We let $\mathbf{k}$ be an arbitrary commutative ring with unity.\footnote{Many
authors, such as those of \cite{LamPyl}, set $\mathbf{k}=\mathbb{Z}$.} Let
$x_{1},x_{2},x_{3},\ldots$ be a set of countably many (hitherto unused)
symbols, which we will use as commuting indeterminates. We can then consider
the ring $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right] \right]
$ of formal power series in these indeterminates $x_{1},x_{2},x_{3},\ldots$.
Given a weak composition $\alpha$, we let $\mathbf{x}^{\alpha}$ be the
monomial $x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}x_{3}^{\alpha_{3}}\cdots$. Then,
these monomials $\mathbf{x}^{\alpha}$ with $\alpha$ ranging over all weak
compositions are precisely all the monomials that can occur in a formal power
series in $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right] \right]
$.
\end{verlong}
A formal power series $f\in\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3}%
,\ldots\right] \right] $ is said to be \textit{bounded-degree} if there
exists an $N\in\mathbb{N}$ such that every monomial $\mathbf{x}^{\alpha}$
which occurs (with nonzero coefficient) in $f$ satisfies $\left\vert
\alpha\right\vert \leq N$. (Notice that $\left\vert \alpha\right\vert $ is the
degree of $\mathbf{x}^{\alpha}$.) The set of all bounded-degree power series
in $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right] \right] $ is a
$\mathbf{k}$-subalgebra of $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3}%
,\ldots\right] \right] $, and will be denoted by $\mathbf{k}\left[ \left[
x_{1},x_{2},x_{3},\ldots\right] \right] _{\operatorname*{bdd}}$.
We let $\mathfrak{S}_{\left( \infty\right) }$ denote the group of all
permutations $\pi$ of the set $\mathbb{N}_{+}$ such that all but finitely many
$i\in\mathbb{N}_{+}$ satisfy $\pi\left( i\right) =i$. This is a subgroup of
the group $\mathfrak{S}_{\infty}$ of \textit{all} permutations of
$\mathbb{N}_{+}$. The group $\mathfrak{S}_{\left( \infty\right) }$ is
generated by the subset $\left\{ s_{1},s_{2},s_{3},\ldots\right\} $, where
each $s_{i}$ is the transposition $\left( i,i+1\right) $%
.\ \ \ \ \footnote{To prove this result, it is enough to notice that the
finite symmetric groups $\mathfrak{S}_{n}$ for all $n\in\mathbb{N}$ can be
canonically embedded into $\mathfrak{S}_{\left( \infty\right) }$, and
$\mathfrak{S}_{\left( \infty\right) }$ becomes their direct limit.} The
group $\mathfrak{S}_{\infty}$ (and thus, also its subgroup $\mathfrak{S}%
_{\left( \infty\right) }$) acts on the set of all weak compositions by the
rule%
\begin{align*}
\pi\cdot\left( \alpha_{1},\alpha_{2},\alpha_{3},\ldots\right) & =\left(
\alpha_{\pi^{-1}\left( 1\right) },\alpha_{\pi^{-1}\left( 2\right) }%
,\alpha_{\pi^{-1}\left( 3\right) },\ldots\right) \\
& \ \ \ \ \ \ \ \ \ \ \text{for every }\pi\in\mathfrak{S}_{\infty}\text{
and}\\
& \ \ \ \ \ \ \ \ \ \ \text{ every weak composition }\left( \alpha
_{1},\alpha_{2},\alpha_{3},\ldots\right) .
\end{align*}
A formal power series $f\in\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3}%
,\ldots\right] \right] $ is said to be \textit{symmetric} if it has the
following property: Whenever $\alpha$ and $\beta$ are two weak compositions in
the same $\mathfrak{S}_{\left( \infty\right) }$-orbit, the coefficients of
$f$ before $\mathbf{x}^{\alpha}$ and before $\mathbf{x}^{\beta}$ are
equal.\footnote{Notice that this definition does not change if $\mathfrak{S}%
_{\left( \infty\right) }$ is replaced by $\mathfrak{S}_{\infty}$. But it is
customary (and useful to our purposes) to define it using $\mathfrak{S}%
_{\left( \infty\right) }$.}
The \textit{symmetric functions} over $\mathbf{k}$ are defined to be the
symmetric bounded-degree power series $f\in\mathbf{k}\left[ \left[
x_{1},x_{2},x_{3},\ldots\right] \right] $. They form a $\mathbf{k}%
$-subalgebra of $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right]
\right] $. This $\mathbf{k}$-subalgebra is called the \textit{ring of
symmetric functions over }$\mathbf{k}$; it will be denoted by $\Lambda$ or
(when $\mathbf{k}$ is not clear from the context) by $\Lambda_{\mathbf{k}}$.
(The reader shall be warned that \cite{LamPyl} denotes this $\mathbf{k}%
$-algebra by $\operatorname*{Sym}$, while using the notation $\Lambda$ for the
set which we call $\operatorname*{Par}$.) Symmetric functions are a classical
field of research, and are closely related to Young diagrams and tableaux; see
\cite[Chapter 7]{Stan99}, \cite{Macdon95} and \cite[Chapter 2]{GriRei15} for expositions.
Another equivalent way to define the notion of symmetric functions\ is the
following: The group $\mathfrak{S}_{\infty}$ acts $\mathbf{k}$-linearly and
continuously on the $\mathbf{k}$-module $\mathbf{k}\left[ \left[ x_{1}%
,x_{2},x_{3},\ldots\right] \right] $ by the rule%
\[
\pi\mathbf{x}^{\alpha}=\mathbf{x}^{\pi\cdot\alpha}%
\ \ \ \ \ \ \ \ \ \ \text{for every }\pi\in\mathfrak{S}_{\infty}\text{ and
every weak composition }\alpha\text{.}%
\]
The subgroup $\mathfrak{S}_{\left( \infty\right) }$ of $\mathfrak{S}%
_{\infty}$ thus also acts on $\mathbf{k}\left[ \left[ x_{1},x_{2}%
,x_{3},\ldots\right] \right] $ by restriction. Both $\mathfrak{S}_{\infty}$
and $\mathfrak{S}_{\left( \infty\right) }$ preserve the $\mathbf{k}%
$-submodule $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right]
\right] _{\operatorname*{bdd}}$, and thus act on $\mathbf{k}\left[ \left[
x_{1},x_{2},x_{3},\ldots\right] \right] _{\operatorname*{bdd}}$ as well.
Now,%
\[
\Lambda=\left( \mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right]
\right] _{\operatorname*{bdd}}\right) ^{\mathfrak{S}_{\infty}}=\left(
\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right] \right]
_{\operatorname*{bdd}}\right) ^{\mathfrak{S}_{\left( \infty\right) }}.
\]
\subsection{Schur functions}
Given a subset $Z$ of $\mathbb{N}_{+}^{2}$ and a filling $T$ of $Z$, we define
a weak composition $\operatorname*{cont}\left( T\right) $ by setting%
\begin{align*}
\left( \operatorname*{cont}\left( T\right) \right) _{i} & =\left\vert
T^{-1}\left( i\right) \right\vert =\left( \text{the number of entries of
}T\text{ equal to }i\right) \\
& \ \ \ \ \ \ \ \ \ \ \text{for every }i\in\mathbb{N}_{+}.
\end{align*}
We call $\operatorname*{cont}\left( T\right) $ the \textit{content} of $T$.
Notice that $\mathbf{x}^{\operatorname*{cont}\left( T\right) }=\prod_{c\in
Z}x_{T\left( c\right) }$.
\begin{verlong}
\begin{proof}
Let $Z$ be a subset of $\mathbb{N}_{+}^{2}$. Let $T$ be a filling of $Z$. We
need to show that $\mathbf{x}^{\operatorname*{cont}\left( T\right) }%
=\prod_{c\in Z}x_{T\left( c\right) }$.
The definition of $\mathbf{x}^{\operatorname*{cont}\left( T\right) }$ yields%
\begin{align*}
\mathbf{x}^{\operatorname*{cont}\left( T\right) } & =\prod_{i\in
\mathbb{N}_{+}}\underbrace{x_{i}^{\left( \operatorname*{cont}\left(
T\right) \right) _{i}}}_{\substack{=x_{i}^{\left\vert T^{-1}\left(
i\right) \right\vert }\\\text{(since }\left( \operatorname*{cont}\left(
T\right) \right) _{i}=\left\vert T^{-1}\left( i\right) \right\vert
\text{)}}}=\prod_{i\in\mathbb{N}_{+}}\underbrace{x_{i}^{\left\vert
T^{-1}\left( i\right) \right\vert }}_{\substack{=\prod_{c\in T^{-1}\left(
i\right) }x_{i}\\\text{(since }\prod_{c\in T^{-1}\left( i\right) }%
x_{i}=x_{i}^{\left\vert T^{-1}\left( i\right) \right\vert }\text{)}}%
}=\prod_{i\in\mathbb{N}_{+}}\underbrace{\prod_{c\in T^{-1}\left( i\right) }%
}_{=\prod_{\substack{c\in Z;\\T\left( c\right) =i}}}x_{i}\\
& =\prod_{i\in\mathbb{N}_{+}}\prod_{\substack{c\in Z;\\T\left( c\right)
=i}}\underbrace{x_{i}}_{\substack{=x_{T\left( c\right) }\\\text{(since
}i=T\left( c\right) \text{ (since }T\left( c\right) =i\text{))}%
}}=\underbrace{\prod_{i\in\mathbb{N}_{+}}\prod_{\substack{c\in Z;\\T\left(
c\right) =i}}}_{=\prod_{c\in Z}}x_{T\left( c\right) }=\prod_{c\in
Z}x_{T\left( c\right) },
\end{align*}
qed.
\end{proof}
\end{verlong}
Given a skew partition $\lambda/\mu$, we define the \textit{Schur function}
$s_{\lambda/\mu}$ to be the formal power series $\sum_{\substack{T\text{ is a
semistandard}\\\text{tableau of shape }Y\left( \lambda/\mu\right)
}}\mathbf{x}^{\operatorname*{cont}\left( T\right) }$. A nontrivial property
of these Schur functions is that they are symmetric:
\begin{proposition}
\label{prop.schur.symm}We have $s_{\lambda/\mu}\in\Lambda$ for every skew
partition $\lambda/\mu$.
\end{proposition}
This result appears, e.g., in \cite[Theorem 7.10.2]{Stan99} and
\cite[Proposition 2.11]{GriRei15}; it is commonly proven bijectively using the
so-called \textit{Bender-Knuth involutions}. We shall recall the definitions
of these involutions in Section \ref{sect.BKclassical}.
One might attempt to replace \textquotedblleft semistandard
tableau\textquotedblright\ by \textquotedblleft rpp\textquotedblright\ in the
definition of a Schur function. However, the resulting power series are (in
general) no longer symmetric (for instance, $\sum_{\substack{T\text{ is an
rpp}\\\text{of shape }Y\left( \left( 2,1\right) \right) }}\mathbf{x}%
^{\operatorname*{cont}\left( T\right) }\notin\Lambda$). Nevertheless, Lam
and Pylyavskyy \cite[\S 9]{LamPyl} have noticed that it is possible to define
symmetric functions from rpps, albeit it requires replacing the content
$\operatorname*{cont}\left( T\right) $ by a subtler construction. Let us now
discuss their definition.
\subsection{Dual stable Grothendieck polynomials}
If $Z$ is a convex subset of $\mathbb{N}_{+}^{2}$, if $T$ is a filling of $Z$,
and if $k\in\mathbb{N}_{+}$, then:
\begin{itemize}
\item The $k$\textit{-th column of }$T$ will mean the sequence of all entries
of $T$ in cells of the form $\left( i,k\right) $ with $i\in\mathbb{N}_{+}$
(in the order of increasing $i$).
\item The $k$\textit{-th row of }$T$ will mean the sequence of all entries of
$T$ in cells of the form $\left( k,i\right) $ with $i\in\mathbb{N}_{+}$ (in
the order of increasing $i$).
\end{itemize}
Notice that (due to $Z$ being convex) there are no \textquotedblleft
gaps\textquotedblright\ in these rows and columns: If $Z$ is a convex subset
of $\mathbb{N}_{+}^{2}$, and if $k\in\mathbb{N}_{+}$, then the positive
integers $i$ satisfying $\left( i,k\right) \in Z$ form a (possibly empty)
interval, and so do the positive integers $i$ satisfying $\left( k,i\right)
\in Z$.
If $Z$ is a convex subset of $\mathbb{N}_{+}^{2}$, and if $T$ is a filling of
$Z$, then we define a weak composition $\operatorname*{ircont}\left(
T\right) $ by setting%
\begin{align*}
& \left( \operatorname*{ircont}\left( T\right) \right) _{i}=\left(
\text{the number of }k\in\mathbb{N}_{+}\text{ such that the }k\text{-th column
of }T\text{ contains }i\right) \\
& \ \ \ \ \ \ \ \ \ \ \text{for every }i\in\mathbb{N}_{+}.
\end{align*}
(In more colloquial terms, $\left( \operatorname*{ircont}\left( T\right)
\right) _{i}$ is the number of columns of $T$ which contain $i$.) We refer to
$\operatorname*{ircont}\left( T\right) $ as the \textit{irredundant content}
of $T$. For instance, if $T=%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& 3 & 3 \\
%2 & 3 \\
%3 & 4
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& 3 & 3 \\
2 & 3 \\
3 & 4
\end{ytableau}%
%EndExpansion
$, then $\operatorname*{ircont}\left( T\right) =\left( 0,1,3,1,0,0,0,\ldots
\right) $ (since $1$ is contained in $0$ columns of $T$, while $2$ is
contained in $1$ column, $3$ in $3$ columns, etc.).
Notice that
\begin{equation}
\operatorname*{ircont}\left( T\right) =\operatorname*{cont}\left( T\right)
\ \ \ \ \ \ \ \ \ \ \text{if }T\text{ is a semistandard tableau.}
\label{eq.ircont=cont}%
\end{equation}
\begin{vershort}
Indeed, (\ref{eq.ircont=cont}) follows by noticing that in every given column
of a semistandard tableau, every positive integer occurs at most once.
\end{vershort}
\begin{verlong}
\begin{proof}
[Proof of (\ref{eq.ircont=cont}).]Let $T$ be a semistandard tableau. Let
$i\in\mathbb{N}_{+}$. The definition of $\left( \operatorname*{cont}\left(
T\right) \right) _{i}$ yields%
\begin{align}
& \left( \operatorname*{cont}\left( T\right) \right) _{i}\nonumber\\
& =\left( \text{the number of entries of }T\text{ equal to }i\right)
\nonumber\\
& =\sum_{k\in\mathbb{N}_{+}}\left( \text{the number of entries in the
}k\text{-th column of }T\text{ which are equal to }i\right) .
\label{pf.eq.ircont=cont.1}%
\end{align}
But let $k\in\mathbb{N}_{+}$. The entries of $T$ are strictly increasing down
columns (since $T$ is a semistandard tableau). Thus, in particular, the $k$-th
column of $T$ is strictly increasing. Consequently, all entries of this column
are distinct. Hence, the entry $i$ appears at most once in this column. In
other words,%
\[
\left( \text{the number of entries in the }k\text{-th column of }T\text{
which are equal to }i\right) \leq1.
\]
Hence,
\begin{align}
& \left( \text{the number of entries in the }k\text{-th column of }T\text{
which are equal to }i\right) \nonumber\\
& =\left\{
\begin{array}
[c]{c}%
1,\ \text{if the }k\text{-th column of }T\text{ contains }i;\\
0,\ \text{if the }k\text{-th column of }T\text{ does not contain }i
\end{array}
\right. . \label{pf.eq.ircont=cont.2}%
\end{align}
Let us now forget that we fixed $k$. We thus have shown that every
$k\in\mathbb{N}_{+}$ satisfies (\ref{pf.eq.ircont=cont.2}). Hence,
(\ref{pf.eq.ircont=cont.1}) becomes%
\begin{align*}
& \left( \operatorname*{cont}\left( T\right) \right) _{i}\\
& =\sum_{k\in\mathbb{N}_{+}}\underbrace{\left( \text{the number of entries
in the }k\text{-th column of }T\text{ which are equal to }i\right)
}_{\substack{=\left\{
\begin{array}
[c]{c}%
1,\ \text{if the }k\text{-th column of }T\text{ contains }i;\\
0,\ \text{if the }k\text{-th column of }T\text{ does not contain }i
\end{array}
\right. \\\text{(by (\ref{pf.eq.ircont=cont.2}))}}}\\
& =\sum_{k\in\mathbb{N}_{+}}\left\{
\begin{array}
[c]{c}%
1,\ \text{if the }k\text{-th column of }T\text{ contains }i;\\
0,\ \text{if the }k\text{-th column of }T\text{ does not contain }i
\end{array}
\right. \\
& =\sum_{\substack{k\in\mathbb{N}_{+};\\\text{the }k\text{-th column of
}T\text{ contains }i}}1+\underbrace{\sum_{\substack{k\in\mathbb{N}%
_{+};\\\text{the }k\text{-th column of }T\text{ does not contain }i}}0}%
_{=0}=\sum_{\substack{k\in\mathbb{N}_{+};\\\text{the }k\text{-th column of
}T\text{ contains }i}}1\\
& =\left( \text{the number of }k\in\mathbb{N}_{+}\text{ such that the
}k\text{-th column of }T\text{ contains }i\right) \\
& =\left( \operatorname*{ircont}\left( T\right) \right) _{i}%
\end{align*}
(because $\left( \operatorname*{ircont}\left( T\right) \right)
_{i}=\left( \text{the number of }k\in\mathbb{N}_{+}\text{ such that the
}k\text{-th column of }T\text{ contains }i\right) $).
Let us now forget that we fixed $i$. We thus have shown that $\left(
\operatorname*{cont}\left( T\right) \right) _{i}=\left(
\operatorname*{ircont}\left( T\right) \right) _{i}$ for every
$i\in\mathbb{N}_{+}$. In other words, $\operatorname*{cont}\left( T\right)
=\operatorname*{ircont}\left( T\right) $. This proves (\ref{eq.ircont=cont}).
\end{proof}
\end{verlong}
For the rest of this section, we fix a skew partition $\lambda/\mu$. Now, the
\textit{dual stable Grothendieck polynomial} $g_{\lambda/\mu}$ is defined to
be the formal power series%
\[
\sum_{\substack{T\text{ is an rpp}\\\text{of shape }Y\left( \lambda
/\mu\right) }}\mathbf{x}^{\operatorname*{ircont}\left( T\right) }.
\]
It is easy to see that $g_{\lambda/\mu}$ is a well-defined formal power series
(i.e., the infinite sum $\sum_{\substack{T\text{ is an rpp}\\\text{of shape
}Y\left( \lambda/\mu\right) }}\mathbf{x}^{\operatorname*{ircont}\left(
T\right) }$ converges in the usual topology on the ring $\mathbf{k}\left[
\left[ x_{1},x_{2},x_{3},\ldots\right] \right] $).\ \ \ \ \footnote{Be
warned that $g_{\lambda/\mu}$ is (despite its name) not a polynomial (barring
trivial cases).} Unlike the Schur function $s_{\lambda/\mu}$, it is (in
general) not homogeneous, because whenever a column of an rpp $T$ contains an
entry several times, the corresponding monomial $\mathbf{x}%
^{\operatorname*{ircont}\left( T\right) }$ \textquotedblleft
counts\textquotedblright\ this entry only once. It is fairly clear that the
highest-degree homogeneous component of $g_{\lambda/\mu}$ is $s_{\lambda/\mu}$
(the component of degree $\left\vert \lambda\right\vert -\left\vert
\mu\right\vert $). Therefore, $g_{\lambda/\mu}$ can be regarded as an
inhomogeneous deformation of the Schur function $s_{\lambda/\mu}$.
Lam and Pylyavskyy, in \cite[\S 9.1]{LamPyl}, have shown the following fact:
\begin{proposition}
\label{prop.g.symm}We have $g_{\lambda/\mu}\in\Lambda$ for every skew
partition $\lambda/\mu$.
\end{proposition}
\begin{vershort}
They prove this proposition using generalized plactic algebras \cite[Lemma
3.1]{FomGre} (and also give a second, combinatorial proof for the case
$\mu=\varnothing$ by explicitly expanding $g_{\lambda/\varnothing}$ as a sum
of Schur functions).
\end{vershort}
\begin{verlong}
They prove this fact using the Fomin--Greene machinery of generalized plactic
algebras \cite{FomGre}.\footnote{In \cite[\S 9.1]{LamPyl}, Lam and Pylyavskyy
claim to \textquotedblleft give two proofs\textquotedblright\ of Proposition
\ref{prop.g.symm}. As far as we can tell, this is slightly imprecise: They
only give one proof of Proposition \ref{prop.g.symm}, and then they give an
alternative proof of the particular case of Proposition \ref{prop.g.symm} when
$\mu=\varnothing$ (which actually gives an explicit expression of
$g_{\lambda/\varnothing}$ as a sum of Schur functions).}
\end{verlong}
In the next section, we shall introduce a refinement of these $g_{\lambda/\mu
}$, and later we will reprove Proposition \ref{prop.g.symm} in a
self-contained and elementary way.
\section{\label{sect.def}Refined dual stable Grothendieck polynomials}
\subsection{Definition}
We fix arbitrary elements $t_{1},t_{2},t_{3},\ldots$ of $\mathbf{k}$. (For
instance, $\mathbf{k}$ can be a polynomial ring in infinitely many variables
over another ring $\mathbf{m}$, and $t_{1},t_{2},t_{3},\ldots$ can then be
these variables.) For every weak composition $\alpha$, we set $\mathbf{t}%
^{\alpha}=t_{1}^{\alpha_{1}}t_{2}^{\alpha_{2}}t_{3}^{\alpha_{3}}\cdots
\in\mathbf{k}$.
\begin{vershort}
If $Z$ is a subset of $\mathbb{N}_{+}^{2}$, and if $T$ is a filling of $Z$,
then a \textit{redundant cell} of $T$ will mean a cell $\left( i,j\right) $
of $Z$ such that $\left( i+1,j\right) $ is also a cell of $Z$ and satisfies
$T\left( i,j\right) =T\left( i+1,j\right) $. Notice that a semistandard
tableau is the same thing as an rpp which has no redundant
cells\footnote{\textit{Proof.} Recall that the difference between a
semistandard tableau and an rpp is that the entries of a semistandard tableau
have to be strictly increasing down columns, whereas the entries of an rpp
have to be merely weakly increasing down columns. Thus, a semistandard tableau
is the same thing as an rpp whose every column has no adjacent equal entries.
In other words, a semistandard tableau is the same thing as an rpp which has
no redundant cells (because having two adjacent equal entries in a column is
tantamount to having a redundant cell).}.
\end{vershort}
\begin{verlong}
If $Z$ is a subset of $\mathbb{N}_{+}^{2}$, and if $T$ is a filling of $Z$,
then a \textit{redundant cell} of $T$ will mean a cell $\left( i,j\right) $
of $Z$ such that $\left( i+1,j\right) $ is also a cell of $Z$ and satisfies
$T\left( i,j\right) =T\left( i+1,j\right) $. Notice that a semistandard
tableau is the same thing as an rpp which has no redundant
cells\footnote{\textit{Proof.} First, let $T$ be a semistandard tableau. Then,
$T$ is a filling of a finite convex subset $Z$ of $\mathbb{N}_{+}^{2}$.
Consider this $Z$. The entries of $T$ are strictly increasing down columns
(since $T$ is a semistandard tableau). Hence, if $\left( i,j\right) $ is a
cell of $Z$ such that $\left( i+1,j\right) $ is also a cell of $Z$, then
$T\left( i,j\right) <T\left( i+1,j\right) $, and therefore we cannot have
$T\left( i,j\right) =T\left( i+1,j\right) $. Thus, $T$ has no redundant
cells. Hence, $T$ is an rpp which has no redundant cells.
\par
Let us now forget that we fixed $T$. We thus have shown that if $T$ is a
semistandard tableau, then $T$ is an rpp which has no redundant cells. It thus
remains to prove the converse, i.e., to prove that if $T$ is an rpp which has
no redundant cells, then $T$ is a semistandard tableau.
\par
So let $T$ be an rpp which has no redundant cells. We need to show that $T$ is
a semistandard tableau. Notice that $T$ is a filling of a finite convex subset
$Z$ of $\mathbb{N}_{+}^{2}$. Consider this $Z$. We need to show that $T$ is a
semistandard tableau. It is clearly enough to prove that the entries of $T$
are strictly increasing down columns (since all other conditions in the
definition of a semistandard tableau follow from $T$ being an rpp). In order
to show this, it suffices to check that if $\left( i,j\right) $ is a cell of
$Z$ such that $\left( i+1,j\right) $ is also a cell of $Z$, then $T\left(
i,j\right) <T\left( i+1,j\right) $. So let $\left( i,j\right) $ be a cell
of $Z$ such that $\left( i+1,j\right) $ is also a cell of $Z$. Then,
$T\left( i,j\right) \leq T\left( i+1,j\right) $ (since the entries of $T$
are weakly increasing down columns (since $T$ is an rpp)), but we cannot have
$T\left( i,j\right) =T\left( i+1,j\right) $ (since otherwise, $\left(
i,j\right) $ would be a redundant cell of $T$, but this would contradict the
fact that $T$ has no redundant cells). Thus, $T\left( i,j\right) <T\left(
i+1,j\right) $. This completes our proof.}.
\end{verlong}
If $Z$ is a subset of $\mathbb{N}_{+}^{2}$, and if $T$ is a filling of $Z$,
then we define a weak composition $\operatorname*{ceq}\left( T\right) $ by%
\begin{align}
& \left( \operatorname*{ceq}\left( T\right) \right) _{i}=\left(
\text{the number of }j\in\mathbb{N}_{+}\text{ such that }\left( i,j\right)
\text{ is a redundant cell of }T\right) \label{eq.gtilde.ceq.def}\\
& \ \ \ \ \ \ \ \ \ \ \text{for every }i\in\mathbb{N}_{+}.\nonumber
\end{align}
(Visually speaking, $\left( \operatorname*{ceq}\left( T\right) \right)
_{i}$ is the number of columns of $T$ whose entry in the $i$-th row equals