-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpytorch_preprocessing.py
119 lines (85 loc) Β· 3.37 KB
/
pytorch_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright 2020 Arkadip Bhattacharya
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
class WindSpeedDataset(Dataset):
def __init__(self, dataframe, transform=None):
dataframe1 = dataframe.copy()
self.transform = transform
if 'time' in dataframe1:
dataframe1.pop('time')
if 'wind_speed' in dataframe1:
self.labelset = dataframe1.pop('wind_speed')
self.featureset = dataframe1
def __len__(self):
return len(self.featureset)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# print(idx)
label = np.array([self.labelset.iloc[idx]])
features = self.featureset.iloc[idx].to_numpy()
sample =(features, label)
if self.transform:
sample = self.transform(sample)
return sample
class WindSpeedTimeSeriesDataset(Dataset):
def __init__(self, dataframe, window_size=6, transform=None):
dataframeC = dataframe.copy()
self.transform = transform
self.window_size = window_size
if 'time' in dataframeC:
dataframeC.pop('time')
if 'wind_speed' in dataframeC:
self.labelset = dataframeC['wind_speed']
self.featureset = dataframeC
def __len__(self):
return math.floor(len(self.featureset) - self.window_size) - 1
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# print(idx)
label = np.array([self.labelset.iloc[idx+self.window_size]])
features = self.featureset.iloc[idx:idx+self.window_size].to_numpy()
sample = (features, label)
if self.transform:
sample = self.transform(sample)
return sample
class ComposeTransform(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> ComposeTransform([
>>> ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, data):
for t in self.transforms:
img = t(data)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample):
data, label = sample
return (torch.from_numpy(data),torch.from_numpy(label))