forked from stamatak/standard-RAxML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlegacyCode.c
916 lines (681 loc) · 22.9 KB
/
legacyCode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
// this file contains legacy code of functions that are not being used any more but that could
// become useful in the future again!
//old mygetopt, basically an adaption of the GNU implementation
static int mygetopt(int argc, char **argv, char *opts, int *optind, char **optarg)
{
static
int sp = 1;
register
int c;
register
char *cp;
if(sp == 1)
{
if(*optind >= argc || argv[*optind][0] != '-' || argv[*optind][1] == '\0')
return -1;
}
else
{
if(strcmp(argv[*optind], "--") == 0)
{
*optind = *optind + 1;
return -1;
}
}
c = argv[*optind][sp];
if(c == ':' || (cp=strchr(opts, c)) == 0)
{
printf(": illegal option -- %c \n", c);
if(argv[*optind][++sp] == '\0')
{
*optind = *optind + 1;
sp = 1;
}
return('?');
}
if(*++cp == ':')
{
if(argv[*optind][sp+1] != '\0')
{
*optarg = &argv[*optind][sp+1];
*optind = *optind + 1;
}
else
{
*optind = *optind + 1;
if(*optind >= argc)
{
printf(": option requires an argument -- %c\n", c);
sp = 1;
return('?');
}
else
{
*optarg = argv[*optind];
*optind = *optind + 1;
}
}
sp = 1;
}
else
{
if(argv[*optind][++sp] == '\0')
{
sp = 1;
*optind = *optind + 1;
}
*optarg = 0;
}
return(c);
}
//old MRE implementation
#else
static void mre(hashtable *h, boolean icp, entry*** sbi, int* len, int which, int n, unsigned int vectorLength, boolean sortp, tree *tr, boolean bootStopping)
{
entry **sbw;
unsigned int
i = 0,
j = 0,
k = 0;
sbw = (entry **) rax_calloc(h->entryCount, sizeof(entry *));
for(i = 0; i < h->tableSize; i++)
{
if(h->table[i] != NULL)
{
entry *e = h->table[i];
do
{
sbw[j] = e;
j++;
e = e->next;
}
while(e != NULL);
}
}
assert(j == h->entryCount);
if(which == 0)
qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight0);
else
qsort(sbw, h->entryCount, sizeof(entry *), _sortByWeight1);
/* *********************************** */
/* SOS SBI is never rax_freed ********************* */
/* ******************************************** */
/**** this will cause problems for repeated invocations */
/**** with the bootstopping MRE VERSION !!!!!! ***/
*sbi = (entry **)rax_calloc(n - 3, sizeof(entry *));
*len = 0;
if(icp == FALSE)
{
for(i = 0; i < h->entryCount && (*len) < n-3; i++)
{
boolean compatflag = TRUE;
assert(*len < n-3);
/* for(k = 0; k < (unsigned int)(*len); k++) */
/*if(sbw[i]->supportFromTreeset[which] <= mr_thresh) */
for(k = ((unsigned int)(*len)); k > 0; k--)
{
/*
k indexes sbi
j indexes sbw
need to compare the two
*/
if(!compatible((*sbi)[k-1], sbw[i], vectorLength))
{
compatflag = FALSE;
break;
}
}
if(compatflag)
{
(*sbi)[*len] = sbw[i];
(*len)++;
}
}
}
else
{
for(i = 0; i < (unsigned int)(n-3); i++)
{
(*sbi)[i] = sbw[i];
(*len)++;
}
}
rax_free(sbw);
if (sortp == TRUE)
qsort(*sbi, (*len), sizeof(entry *), sortByIndex);
return;
}
static void printBip(entry *curBip, entry **consensusBips, const unsigned int consensusBipLen, const int numtips, const unsigned int vectorLen,
boolean *processed, tree *tr, FILE *outf, const int numberOfTrees, boolean topLevel, unsigned int *printCounter)
{
int
branchLabel,
printed = 0;
unsigned int
i,
j;
unsigned int *subBip = (unsigned int *)rax_calloc(vectorLen, sizeof(unsigned int));
double
support = 0.0;
for(i = 0; i < consensusBipLen; i++)
{
if((!processed[i]) && issubset(consensusBips[i]->bitVector, curBip->bitVector, vectorLen))
{
boolean processThisRound = TRUE;
for (j = 0; j < consensusBipLen; j++)
if(j != i && !processed[j] && issubset(consensusBips[i]->bitVector, consensusBips[j]->bitVector, vectorLen))
processThisRound = FALSE;
if(processThisRound == TRUE)
{
processed[i] = TRUE;
for(j = 0; j < vectorLen; j++)
subBip[j] |= consensusBips[i]->bitVector[j];
if(printed == 0 && !topLevel)
fprintf(outf, "(");
else
fprintf(outf, ",");
printBip(consensusBips[i], consensusBips, consensusBipLen, numtips, vectorLen, processed, tr, outf, numberOfTrees, FALSE, printCounter);
printed += 1;
}
}
}
for(i = 0; i < ((unsigned int)numtips); i++)
{
if((((curBip->bitVector[i/MASK_LENGTH] & mask32[i%MASK_LENGTH]) > 0) && ((subBip[i/MASK_LENGTH] & mask32[i%MASK_LENGTH]) == 0) ) == TRUE)
{
if(printed == 0 && !topLevel)
fprintf(outf,"(");
else
fprintf(outf,",");
fprintf(outf,"%s", tr->nameList[i+1]);
printed += 1;
}
}
rax_free(subBip);
support = ((double)(curBip->supportFromTreeset[0])) / ((double) (numberOfTrees));
branchLabel = (int)(0.5 + support * 100.0);
if(!topLevel)
{
*printCounter = *printCounter + 1;
fprintf(outf,"):1.0[%d]", branchLabel);
}
}
void computeConsensusOnly(tree *tr, char *treeSetFileName, analdef *adef)
{
hashtable
*h = initHashTable(tr->mxtips * FC_INIT * 10);
hashNumberType
entries = 0;
int
numberOfTrees = 0,
i,
j,
l,
treeVectorLength,
consensusBipsLen,
mr_thresh;
unsigned int
printCounter = 0,
vectorLength,
**bitVectors = initBitVector(tr, &vectorLength),
*topBip;
entry
topBipE,
**consensusBips;
boolean
*processed;
char
consensusFileName[1024];
FILE
*outf,
*treeFile = getNumberOfTrees(tr, treeSetFileName, adef);
numberOfTrees = tr->numberOfTrees;
checkTreeNumber(numberOfTrees, treeSetFileName);
mr_thresh = ((double)numberOfTrees / 2.0);
assert(sizeof(unsigned char) == 1);
if(numberOfTrees % MASK_LENGTH == 0)
treeVectorLength = numberOfTrees / MASK_LENGTH;
else
treeVectorLength = 1 + (numberOfTrees / MASK_LENGTH);
for(i = 1; i <= numberOfTrees; i++)
{
int
bCount = 0;
treeReadLen(treeFile, tr, FALSE, FALSE, TRUE, adef, TRUE, FALSE);
assert(tr->mxtips == tr->ntips);
bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vectorLength, h, (i - 1), BIPARTITIONS_BOOTSTOP, (branchInfo *)NULL,
&bCount, treeVectorLength, FALSE, FALSE);
assert(bCount == tr->mxtips - 3);
}
if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS)
{
consensusBips = (entry **)rax_calloc(tr->mxtips - 3, sizeof(entry *));
consensusBipsLen = 0;
}
for(j = 0; j < (int)h->tableSize; j++)
{
if(h->table[j] != NULL)
{
entry *e = h->table[j];
do
{
int cnt = 0;
unsigned int
*set = e->treeVector;
for(l = 0; l < numberOfTrees; l++)
if((set[l / MASK_LENGTH] != 0) && (set[l / MASK_LENGTH] & mask32[l % MASK_LENGTH]))
cnt++;
if(tr->consensusType == MR_CONSENSUS)
{
if(cnt > mr_thresh)
{
consensusBips[consensusBipsLen] = e;
consensusBipsLen++;
}
}
if(tr->consensusType == STRICT_CONSENSUS)
{
if(cnt == numberOfTrees)
{
consensusBips[consensusBipsLen] = e;
consensusBipsLen++;
}
}
e->supportFromTreeset[0] = cnt;
e = e->next;
entries++;
}
while(e != NULL);
}
}
fclose(treeFile);
assert(entries == h->entryCount);
if(tr->consensusType == MR_CONSENSUS || tr->consensusType == STRICT_CONSENSUS)
assert(consensusBipsLen <= (tr->mxtips - 3));
if(tr->consensusType == MRE_CONSENSUS)
mre(h, FALSE, &consensusBips, &consensusBipsLen, 0, tr->mxtips, vectorLength, FALSE, tr);
/* printf("Bips OLD %d\n", consensusBipsLen); */
processed = (boolean *) rax_calloc(consensusBipsLen, sizeof(boolean));
topBip = (unsigned int *) rax_calloc(vectorLength, sizeof(unsigned int));
for(i = 1; i < tr->mxtips; i++)
topBip[i / MASK_LENGTH] |= mask32[i % MASK_LENGTH];
topBipE.bitVector = topBip;
topBipE.supportFromTreeset[0] = numberOfTrees;
strcpy(consensusFileName, workdir);
switch(tr->consensusType)
{
case MR_CONSENSUS:
strcat(consensusFileName, "RAxML_MajorityRuleConsensusTree.");
break;
case MRE_CONSENSUS:
strcat(consensusFileName, "RAxML_MajorityRuleExtendedConsensusTree.");
break;
case STRICT_CONSENSUS:
strcat(consensusFileName, "RAxML_StrictConsensusTree.");
break;
default:
assert(0);
}
strcat(consensusFileName, run_id);
outf = myfopen(consensusFileName, "wb");
fprintf(outf, "(%s", tr->nameList[1]);
printBip(&topBipE, consensusBips, consensusBipsLen, tr->mxtips, vectorLength, processed, tr, outf, numberOfTrees, TRUE, &printCounter);
fprintf(outf, ");\n");
assert(consensusBipsLen == (int)printCounter);
fclose(outf);
switch(tr->consensusType)
{
case MR_CONSENSUS:
printBothOpen("RAxML Majority Rule consensus tree written to file: %s\n", consensusFileName);
break;
case MRE_CONSENSUS:
printBothOpen("RAxML extended Majority Rule consensus tree written to file: %s\n", consensusFileName);
break;
case STRICT_CONSENSUS:
printBothOpen("RAxML strict consensus tree written to file: %s\n", consensusFileName);
break;
default:
assert(0);
}
rax_free(topBip);
rax_free(processed);
freeBitVectors(bitVectors, 2 * tr->mxtips);
rax_free(bitVectors);
freeHashTable(h);
rax_free(h);
rax_free(consensusBips);
exit(0);
}
//old slow initial code for tree plausibility checking
/* function to extract the bit mask for the taxa that are present in the small tree */
static void setupMask(unsigned int *smallTreeMask, nodeptr p, int numsp)
{
if(isTip(p->number, numsp))
smallTreeMask[(p->number - 1) / MASK_LENGTH] |= mask32[(p->number - 1) % MASK_LENGTH];
else
{
nodeptr
q = p->next;
/* I had to change this function to account for mult-furcating trees.
In this case an inner node can have more than 3 cyclically linked
elements, because there might be more than 3 outgoing branches
from an inner node */
while(q != p)
{
setupMask(smallTreeMask, q->back, numsp);
q = q->next;
}
//old code below
//setupMask(smallTreeMask, p->next->back, numsp);
//setupMask(smallTreeMask, p->next->next->back, numsp);
}
}
static void newviewBipartitions(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength)
{
if(isTip(p->number, numsp))
return;
{
nodeptr
q = p->next->back,
r = p->next->next->back;
unsigned int
*vector = bitVectors[p->number],
*left = bitVectors[q->number],
*right = bitVectors[r->number];
unsigned
int i;
while(!p->x)
{
if(!p->x)
getxnode(p);
}
p->hash = q->hash ^ r->hash;
if(isTip(q->number, numsp) && isTip(r->number, numsp))
{
for(i = 0; i < vectorLength; i++)
vector[i] = left[i] | right[i];
}
else
{
if(isTip(q->number, numsp) || isTip(r->number, numsp))
{
if(isTip(r->number, numsp))
{
nodeptr tmp = r;
r = q;
q = tmp;
}
while(!r->x)
{
if(!r->x)
newviewBipartitions(bitVectors, r, numsp, vectorLength);
}
for(i = 0; i < vectorLength; i++)
vector[i] = left[i] | right[i];
}
else
{
while((!r->x) || (!q->x))
{
if(!q->x)
newviewBipartitions(bitVectors, q, numsp, vectorLength);
if(!r->x)
newviewBipartitions(bitVectors, r, numsp, vectorLength);
}
for(i = 0; i < vectorLength; i++)
vector[i] = left[i] | right[i];
}
}
}
}
/* this function actually traverses the small tree, generates the bit vectors for all
non-trivial bipartitions and simultaneously counts how many bipartitions (already stored in the has table) are shared with the big tree
*/
static int bitVectorTraversePlausibility(unsigned int **bitVectors, nodeptr p, int numsp, unsigned int vectorLength, hashtable *h,
int *countBranches, int firstTaxon, tree *tr, boolean multifurcating)
{
/* trivial bipartition */
if(isTip(p->number, numsp))
return 0;
else
{
int
found = 0;
nodeptr
q = p->next;
/* recursively descend into the tree and get the bips of all subtrees first */
do
{
found = found + bitVectorTraversePlausibility(bitVectors, q->back, numsp, vectorLength, h, countBranches, firstTaxon, tr, multifurcating);
q = q->next;
}
while(q != p);
/* compute the bipartition induced by the current branch p, p->back,
here we invoke two different functions, depending on whether we are dealing with
a multi-furcating or bifurcating tree.
*/
if(multifurcating)
newviewBipartitionsMultifurcating(bitVectors, p, numsp, vectorLength);
else
newviewBipartitions(bitVectors, p, numsp, vectorLength);
assert(p->x);
/* if p->back does not lead to a tip this is an inner branch that induces a non-trivial bipartition.
in this case we need to lookup if the induced bipartition is already contained in the hash table
*/
if(!(isTip(p->back->number, numsp)))
{
/* this is the bit vector to insert into the hash table */
unsigned int
*toInsert = bitVectors[p->number];
/* compute the hash number on that bit vector */
hashNumberType
position = oat_hash((unsigned char *)toInsert, sizeof(unsigned int) * vectorLength) % h->tableSize;
/* each bipartition can be stored in two forms (the two bit-wise complements
we always canonically store that version of the bit-vector that does not contain the
first taxon of the small tree, we use an assertion to make sure that all is correct */
assert(!(toInsert[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]));
/* increment the branch counter to assure that all inner branches are traversed */
*countBranches = *countBranches + 1;
/* now look up this bipartition in the hash table, If it is present the number of
shared bipartitions between the small and the big tree is incremented by 1 */
found = found + findHash(toInsert, h, vectorLength, position);
}
return found;
}
}
////multifurcating trees
void plausibilityChecker(tree *tr, analdef *adef)
{
FILE
*treeFile,
*rfFile;
tree
*smallTree = (tree *)rax_malloc(sizeof(tree));
char
rfFileName[1024];
/* init hash table for big reference tree */
hashtable
*h = initHashTable(tr->mxtips * 2 * 2);
/* init the bit vectors we need for computing and storing bipartitions during
the tree traversal */
unsigned int
vLength,
**bitVectors = initBitVector(tr, &vLength);
int
numberOfTreesAnalyzed = 0,
branchCounter = 0,
i;
double
avgRF = 0.0;
/* set up an output file name */
strcpy(rfFileName, workdir);
strcat(rfFileName, "RAxML_RF-Distances.");
strcat(rfFileName, run_id);
rfFile = myfopen(rfFileName, "wb");
assert(adef->mode == PLAUSIBILITY_CHECKER);
/* open the big reference tree file and parse it */
treeFile = myfopen(tree_file, "r");
printBothOpen("Parsing reference tree %s\n", tree_file);
treeReadLen(treeFile, tr, FALSE, TRUE, TRUE, adef, TRUE, FALSE);
assert(tr->mxtips == tr->ntips);
printBothOpen("The reference tree has %d tips\n", tr->ntips);
fclose(treeFile);
/* extract all induced bipartitions from the big tree and store them in the hastable */
bitVectorInitravSpecial(bitVectors, tr->nodep[1]->back, tr->mxtips, vLength, h, 0, BIPARTITIONS_RF, (branchInfo *)NULL,
&branchCounter, 1, FALSE, FALSE);
assert(branchCounter == tr->mxtips - 3);
/* now see how many small trees we have */
treeFile = getNumberOfTrees(tr, bootStrapFile, adef);
checkTreeNumber(tr->numberOfTrees, bootStrapFile);
/* allocate a data structure for parsing the potentially mult-furcating tree */
allocateMultifurcations(tr, smallTree);
/* loop over all small trees */
for(i = 0; i < tr->numberOfTrees; i++)
{
int
numberOfSplits = readMultifurcatingTree(treeFile, smallTree, adef, TRUE);
if(numberOfSplits > 0)
{
unsigned int
entryCount = 0,
k,
j,
*masked = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int)),
*smallTreeMask = (unsigned int *)rax_calloc(vLength, sizeof(unsigned int));
hashtable
*rehash = initHashTable(tr->mxtips * 2 * 2);
double
rf,
maxRF;
int
bCounter = 0,
bips,
firstTaxon,
taxa = 0;
if(numberOfTreesAnalyzed % 100 == 0)
printBothOpen("Small tree %d has %d tips and %d bipartitions\n", i, smallTree->ntips, numberOfSplits);
/* compute the maximum RF distance for computing the relative RF distance later-on */
/* note that here we need to pay attention, since the RF distance is not normalized
by 2 * (n-3) but we need to account for the fact that the multifurcating small tree
will potentially contain less bipartitions.
Hence the normalization factor is obtained as 2 * numberOfSplits, where numberOfSplits is the number of bipartitions
in the small tree.
*/
maxRF = (double)(2 * numberOfSplits);
/* now set up a bit mask where only the bits are set to one for those
taxa that are actually present in the small tree we just read */
/* note that I had to apply some small changes to this function to make it work for
multi-furcating trees ! */
setupMask(smallTreeMask, smallTree->start, smallTree->mxtips);
setupMask(smallTreeMask, smallTree->start->back, smallTree->mxtips);
/* now get the index of the first taxon of the small tree.
we will use this to unambiguously store the bipartitions
*/
firstTaxon = smallTree->start->number;
/* make sure that this bit vector is set up correctly, i.e., that
it contains as many non-zero bits as there are taxa in this small tree
*/
for(j = 0; j < vLength; j++)
taxa += BIT_COUNT(smallTreeMask[j]);
assert(taxa == smallTree->ntips);
/* now re-hash the big tree by applying the above bit mask */
/* loop over hash table */
for(k = 0, entryCount = 0; k < h->tableSize; k++)
{
if(h->table[k] != NULL)
{
entry *e = h->table[k];
/* we resolve collisions by chaining, hence the loop here */
do
{
unsigned int
*bitVector = e->bitVector;
hashNumberType
position;
int
count = 0;
/* double check that our tree mask contains the first taxon of the small tree */
assert(smallTreeMask[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]);
/* if the first taxon is set then we will re-hash the bit-wise complement of the
bit vector.
The count variable is used for a small optimization */
if(bitVector[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH])
{
//hash complement
for(j = 0; j < vLength; j++)
{
masked[j] = (~bitVector[j]) & smallTreeMask[j];
count += BIT_COUNT(masked[j]);
}
}
else
{
//hash this vector
for(j = 0; j < vLength; j++)
{
masked[j] = bitVector[j] & smallTreeMask[j];
count += BIT_COUNT(masked[j]);
}
}
/* note that padding the last bits is not required because they are set to 0 automatically by smallTreeMask */
/* make sure that we will re-hash the canonic representation of the bipartition
where the bit for firstTaxon is set to 0!
*/
assert(!(masked[(firstTaxon - 1) / MASK_LENGTH] & mask32[(firstTaxon - 1) % MASK_LENGTH]));
/* only if the masked bipartition of the large tree is a non-trivial bipartition (two or more bits set to 1
will we re-hash it */
if(count > 1)
{
/* compute hash */
position = oat_hash((unsigned char *)masked, sizeof(unsigned int) * vLength);
position = position % rehash->tableSize;
/* re-hash to the new hash table that contains the bips of the large tree, pruned down
to the taxa contained in the small tree
*/
insertHashPlausibility(masked, rehash, vLength, position);
}
entryCount++;
e = e->next;
}
while(e != NULL);
}
}
/* make sure that we tried to re-hash all bipartitions of the original tree */
assert(entryCount == (unsigned int)(tr->mxtips - 3));
/* now traverse the small tree and count how many bipartitions it shares
with the corresponding induced tree from the large tree */
/* the following function also had to be modified to account for multi-furcating trees ! */
bips = bitVectorTraversePlausibility(bitVectors, smallTree->start->back, smallTree->mxtips, vLength, rehash, &bCounter, firstTaxon, smallTree, TRUE);
/* compute the relative RF */
rf = (double)(2 * (numberOfSplits - bips)) / maxRF;
assert(numberOfSplits >= bips);
assert(rf <= 1.0);
avgRF += rf;
if(numberOfTreesAnalyzed % 100 == 0)
printBothOpen("Relative RF tree %d: %f\n\n", i, rf);
fprintf(rfFile, "%d %f\n", i, rf);
/* I also modified this assertion, we nee to make sure here that we checked all non-trivial splits/bipartitions
in the multi-furcating tree whech can be less than n - 3 ! */
assert(bCounter == numberOfSplits);
/* free masks and hast table for this iteration */
rax_free(smallTreeMask);
rax_free(masked);
freeHashTable(rehash);
rax_free(rehash);
numberOfTreesAnalyzed++;
}
}
printBothOpen("Number of small trees skipped: %d\n\n", tr->numberOfTrees - numberOfTreesAnalyzed);
printBothOpen("Average RF distance %f\n\n", avgRF / (double)numberOfTreesAnalyzed);
printBothOpen("Total execution time: %f secs\n\n", gettime() - masterTime);
printBothOpen("\nFile containing all %d pair-wise RF distances written to file %s\n\n", numberOfTreesAnalyzed, rfFileName);
fclose(treeFile);
fclose(rfFile);
/* free the data structure used for parsing the potentially multi-furcating tree */
freeMultifurcations(smallTree);
rax_free(smallTree);
freeBitVectors(bitVectors, 2 * tr->mxtips);
rax_free(bitVectors);
freeHashTable(h);
rax_free(h);
}