diff --git a/specification/dartLangSpec.tex b/specification/dartLangSpec.tex index 8e8a070f3..ffe042a6e 100644 --- a/specification/dartLangSpec.tex +++ b/specification/dartLangSpec.tex @@ -2058,7 +2058,7 @@ \section{Functions} that the returned object will not be used (\ref{return}).% } - \item The function is asynchronous, \flatten{T} is not \VOID, + \item The function is asynchronous, \Flatten{T} is not \VOID, and it would have been a compile-time error to declare the function with the body \code{\ASYNC{} \{ \RETURN{} $e$; \}} @@ -11789,7 +11789,7 @@ \subsection{Function Expressions} \commentary{% There is no rule for the case where $T$ is of the form \code{$X$\,\&\,$S$} because this will never occur - (this concept is only used in \flattenName, which is defined below).% + (this concept is only used in \FlattenName, which is defined below).% } \end{itemize} @@ -11844,7 +11844,7 @@ \subsection{Function Expressions} \LMHash{}% We define the auxiliary function -\IndexCustom{\flatten{T}}{flatten(t)@\emph{flatten}$(T)$} +\IndexCustom{\Flatten{T}}{flatten(t)@\emph{flatten}$(T)$} as follows, using the first applicable case: \begin{itemize} @@ -11853,24 +11853,24 @@ \subsection{Function Expressions} for some type variable $X$ and type $S$ then \begin{itemize} \item if $S$ derives a future type $U$ - then \DefEquals{\flatten{T}}{\code{\flatten{U}}}. + then \DefEquals{\Flatten{T}}{\code{\Flatten{U}}}. \item otherwise, - \DefEquals{\flatten{T}}{\code{\flatten{X}}}. + \DefEquals{\Flatten{T}}{\code{\Flatten{X}}}. \end{itemize} \item If $T$ derives a future type \code{Future<$S$>} or \code{FutureOr<$S$>} - then \DefEquals{\flatten{T}}{S}. + then \DefEquals{\Flatten{T}}{S}. \item If $T$ derives a future type \code{Future<$S$>?}\ or - \code{FutureOr<$S$>?}\ then \DefEquals{\flatten{T}}{\code{$S$?}}. + \code{FutureOr<$S$>?}\ then \DefEquals{\Flatten{T}}{\code{$S$?}}. -\item Otherwise, \DefEquals{\flatten{T}}{T}. +\item Otherwise, \DefEquals{\Flatten{T}}{T}. \end{itemize} \rationale{% This definition guarantees that for any type $T$, -\code{$T <:$ FutureOr<$\flatten{T}$>}. The proof is by induction on the +\code{$T <:$ FutureOr<$\Flatten{T}$>}. The proof is by induction on the structure of $T$: \begin{itemize} @@ -11878,21 +11878,21 @@ \subsection{Function Expressions} \begin{itemize} \item if $S$ derives a future type $U$, then \code{$T <: S$} and \code{$S <: U$}, so \code{$T <: U$}. - By the induction hypothesis, \code{$U <:$ FutureOr<$\flatten{U}$>}. - Since \code{$\flatten{T} = \flatten{U}$} in this case, it follows that - \code{$U <:$ FutureOr<$\flatten{T}$>}, and so - \code{$T <:$ FutureOr<$\flatten{T}$>}. + By the induction hypothesis, \code{$U <:$ FutureOr<$\Flatten{U}$>}. + Since \code{$\Flatten{T} = \Flatten{U}$} in this case, it follows that + \code{$U <:$ FutureOr<$\Flatten{T}$>}, and so + \code{$T <:$ FutureOr<$\Flatten{T}$>}. \item otherwise, \code{$T <: X$}. - By the induction hypothesis, \code{$X <:$ FutureOr<$\flatten{X}$>}. - Since \code{$\flatten{T} = \flatten{X}$} in this case, it follows that - \code{$U <:$ FutureOr<$\flatten{T}$>}, and so - \code{$T <:$ FutureOr<$\flatten{T}$>}. + By the induction hypothesis, \code{$X <:$ FutureOr<$\Flatten{X}$>}. + Since \code{$\Flatten{T} = \Flatten{X}$} in this case, it follows that + \code{$U <:$ FutureOr<$\Flatten{T}$>}, and so + \code{$T <:$ FutureOr<$\Flatten{T}$>}. \end{itemize} \item If $T$ derives a future type \code{Future<$S$>} or \code{FutureOr<$S$>}, then, since \code{Future<$S$> $<:$ FutureOr<$S$>}, - it follows that \code{$T <:$ FutureOr<$S$>}. Since \code{$\flatten{T} = S$} - in this case, it follows that \code{$T <:$ FutureOr<$\flatten{T}$>}. + it follows that \code{$T <:$ FutureOr<$S$>}. Since \code{$\Flatten{T} = S$} + in this case, it follows that \code{$T <:$ FutureOr<$\Flatten{T}$>}. \item If $T$ derives a future type \code{Future<$S$>?} or \code{FutureOr<$S$>?}, then, since \code{Future<$S$>? $<:$ FutureOr<$S$>?}, @@ -11900,13 +11900,13 @@ \subsection{Function Expressions} \code{FutureOr<$S$>? $<:$ FutureOr<$S$?>} for any type $S$ (this can be shown using the union type subtype rules and from \code{Future<$S$> $<:$ Future<$S$?>} by covariance), so by transivitity, - \code{$T <:$ FutureOr<$S$?>}. Since \code{$\flatten{T} = S$?} in this case, - it follows that \code{$T <:$ FutureOr<$\flatten{T}$>}. + \code{$T <:$ FutureOr<$S$?>}. Since \code{$\Flatten{T} = S$?} in this case, + it follows that \code{$T <:$ FutureOr<$\Flatten{T}$>}. -\item Otherwise, \code{$\flatten{T} = T$}, so - \code{FutureOr<$\flatten{T}$> $=$ FutureOr<$T$>}. Since +\item Otherwise, \code{$\Flatten{T} = T$}, so + \code{FutureOr<$\Flatten{T}$> $=$ FutureOr<$T$>}. Since \code{$T <:$ FutureOr<$T$>}, it follows that - \code{$T <:$ FutureOr<$\flatten{T}$>}. + \code{$T <:$ FutureOr<$\Flatten{T}$>}. \end{itemize} } @@ -11941,7 +11941,7 @@ \subsection{Function Expressions} \noindent is -\FunctionTypePositionalStdCr{\code{Future<\flatten{T_0}>}}, +\FunctionTypePositionalStdCr{\code{Future<\Flatten{T_0}>}}, \noindent where $T_0$ is the static type of $e$. @@ -11977,7 +11977,7 @@ \subsection{Function Expressions} \noindent is -\FunctionTypeNamedStdCr{\code{Future<\flatten{T_0}>}}, +\FunctionTypeNamedStdCr{\code{Future<\Flatten{T_0}>}}, \noindent where $T_0$ is the static type of $e$. @@ -16765,13 +16765,13 @@ \subsection{Await Expressions} \BlindDefineSymbol{a, e, S}% Let $a$ be an expression of the form \code{\AWAIT\,\,$e$}. Let $S$ be the static type of $e$. -The static type of $a$ is then \flatten{S} +The static type of $a$ is then \Flatten{S} (\ref{functionExpressions}). \LMHash{}% Evaluation of $a$ proceeds as follows: First, the expression $e$ is evaluated to an object $o$. -Let \DefineSymbol{T} be \flatten{S}. +Let \DefineSymbol{T} be \Flatten{S}. If the run-time type of $o$ is a subtype of \code{Future<$T$>}, then let \DefineSymbol{f} be $o$; otherwise let $f$ be the result of creating @@ -16792,7 +16792,7 @@ \subsection{Await Expressions} If $f$ completes with an object $v$, $a$ evaluates to $v$. \rationale{% -The use of \flattenName{} to find $T$ and hence determine the dynamic type test +The use of \FlattenName{} to find $T$ and hence determine the dynamic type test implies that we await a future in every case where this choice is sound.% } @@ -16808,7 +16808,7 @@ \subsection{Await Expressions} However, the second kind could be a \code{Future}. This object isn't a \code{Future}, and it isn't \NULL, so it \emph{must} be considered to be in the second group. -Nevertheless, \flatten{\code{FutureOr?}} is \code{Object?}, +Nevertheless, \Flatten{\code{FutureOr?}} is \code{Object?}, so we \emph{will} await a \code{Future}. We have chosen this semantics because it was the smallest breaking change relative to the semantics in earlier versions of Dart, @@ -19240,7 +19240,7 @@ \subsection{Return} % % Returning without an object is only ok for async-"voidy" return types. It is a compile-time error if $s$ is \code{\RETURN;}, -unless \flatten{T} +unless \Flatten{T} (\ref{functionExpressions}) is \VOID, \DYNAMIC, or \code{Null}. % @@ -19253,26 +19253,26 @@ \subsection{Return} % Returning with an object in an void async function only ok % when that value is async-"voidy". It is a compile-time error if $s$ is \code{\RETURN{} $e$;}, -\flatten{T} is \VOID, -and \flatten{S} is neither \VOID, \DYNAMIC, nor \code{Null}. +\Flatten{T} is \VOID, +and \Flatten{S} is neither \VOID, \DYNAMIC, nor \code{Null}. % % Returning async-void in a "non-async-voidy" function is an error. It is a compile-time error if $s$ is \code{\RETURN{} $e$;}, -\flatten{T} is neither \VOID, \DYNAMIC, nor \code{Null}, -and \flatten{S} is \VOID. +\Flatten{T} is neither \VOID, \DYNAMIC, nor \code{Null}, +and \Flatten{S} is \VOID. % % Otherwise, returning an un-deasync-assignable value is an error. It is a compile-time error if $s$ is \code{\RETURN{} $e$;}, -\flatten{S} is not \VOID, -and \code{Future<\flatten{S}>} is not assignable to $T$. +\Flatten{S} is not \VOID, +and \code{Future<\Flatten{S}>} is not assignable to $T$. \commentary{% -Note that \flatten{T} cannot be \VOID, \DYNAMIC, or \code{Null} +Note that \Flatten{T} cannot be \VOID, \DYNAMIC, or \code{Null} in the last case, because then \code{Future<$U$>} is assignable to $T$ for \emph{all} $U$. In particular, when $T$ is \code{FutureOr} (which is equivalent to \code{Future}), -\code{Future<\flatten{S}>} is assignable to $T$ for all $S$. +\code{Future<\Flatten{S}>} is assignable to $T$ for all $S$. This means that no compile-time error is raised, but \emph{only} the null object (\ref{null}) or an instance of \code{Future} can successfully be returned at run time. @@ -19283,7 +19283,7 @@ \subsection{Return} An error will not be raised if $f$ has no declared return type, since the return type would be \DYNAMIC, -and \code{Future<\flatten{S}>} is assignable to \DYNAMIC{} for all $S$. +and \code{Future<\Flatten{S}>} is assignable to \DYNAMIC{} for all $S$. However, an asynchronous non-generator function that declares a return type which is not ``voidy'' must return an expression explicitly.% @@ -19334,7 +19334,7 @@ \subsection{Return} let $T$ be the actual return type of $f$ (\ref{actualTypes}). If the body of $f$ is marked \ASYNC{} (\ref{functions}) -and $S$ is a subtype of \code{Future<\flatten{T}>} +and $S$ is a subtype of \code{Future<\Flatten{T}>} then let $r$ be the result of evaluating \code{await $v$} where $v$ is a fresh variable bound to $o$. Otherwise let $r$ be $o$.