Colab Python Pandas notebook with some initial data for challenge #3 #18
kodiakpony
started this conversation in
Show and tell
Replies: 1 comment 1 reply
-
Hey @kodiakpony, thanks for sharing your notebook. I took a look at it and very good stuff. From your Venn diagram, is there a way to identify the zip code or town where the economic distress and investment areas overlap? You've identified 512 of those areas, and I thought that might be a great way to start to illustrate the investment that has been happening in those areas. |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I mentioned this in Slack but figured I should do it here, too. Here's a Google Colab notebook that I'm planning to use to explore the dataset using python pandas, which may be a useful starting point for others of you taking this approach. So far it just:
Initial observations:
A lot of the "investment_areas" are in geoids that are not economically distressed. (377 entries have economic_distress_pop_agg=0 and investment_areas=1 vs 512 with both=1). This is less true for qct and opzone.
There is quite a bit of overlap - entries that are in more than one of investment_areas, qct, and opzone
Here are a couple of screen shots to see what I'm up to:
![screenshot_df](https://private-user-images.githubusercontent.com/9092580/369216708-e2f8828b-a121-4e47-bbc2-0a49ea2635bf.jpg?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk2MjU0MzIsIm5iZiI6MTczOTYyNTEzMiwicGF0aCI6Ii85MDkyNTgwLzM2OTIxNjcwOC1lMmY4ODI4Yi1hMTIxLTRlNDctYmJjMi0wYTQ5ZWEyNjM1YmYuanBnP1gtQW16LUFsZ29yaXRobT1BV1M0LUhNQUMtU0hBMjU2JlgtQW16LUNyZWRlbnRpYWw9QUtJQVZDT0RZTFNBNTNQUUs0WkElMkYyMDI1MDIxNSUyRnVzLWVhc3QtMSUyRnMzJTJGYXdzNF9yZXF1ZXN0JlgtQW16LURhdGU9MjAyNTAyMTVUMTMxMjEyWiZYLUFtei1FeHBpcmVzPTMwMCZYLUFtei1TaWduYXR1cmU9ZTJhNzM1OWFhYzliYTVhNWIyOTlhNWM4OWI4NDVjZDhmMTE3MWFlOWZkNzY4OTU4ZmM3YTE1YTdlNmIyMTdhYSZYLUFtei1TaWduZWRIZWFkZXJzPWhvc3QifQ.JAOB4_0hPEgmrpKnJVBk6nhD6rUBSKZ9dc4WRNDiQE8)
![screenshot_crosstabs](https://private-user-images.githubusercontent.com/9092580/369216704-3a06207b-a991-4eb5-961c-a19486fc9ff8.jpg?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk2MjU0MzIsIm5iZiI6MTczOTYyNTEzMiwicGF0aCI6Ii85MDkyNTgwLzM2OTIxNjcwNC0zYTA2MjA3Yi1hOTkxLTRlYjUtOTYxYy1hMTk0ODZmYzlmZjguanBnP1gtQW16LUFsZ29yaXRobT1BV1M0LUhNQUMtU0hBMjU2JlgtQW16LUNyZWRlbnRpYWw9QUtJQVZDT0RZTFNBNTNQUUs0WkElMkYyMDI1MDIxNSUyRnVzLWVhc3QtMSUyRnMzJTJGYXdzNF9yZXF1ZXN0JlgtQW16LURhdGU9MjAyNTAyMTVUMTMxMjEyWiZYLUFtei1FeHBpcmVzPTMwMCZYLUFtei1TaWduYXR1cmU9M2UzY2JiM2RhZDUyYzIyOGIyMGU4MGI1NjQ3ZjU4MDQyMDgxYTZjOTAzMTVmMzhiYzQ4YjIwZDY0MTFjNGYxMiZYLUFtei1TaWduZWRIZWFkZXJzPWhvc3QifQ.TX4ImXMCXor1BHL6-XrLyEORl8YrORveNoKyvpt6UJ0)
Beta Was this translation helpful? Give feedback.
All reactions