Client to interact with a Jupyter Notebook model.
To install the library, run the following command.
pip install jupyter_nbmodel_client
- Ensure you have the needed packages in your environment to run the example here after.
pip install jupyterlab jupyter-collaboration ipykernel matplotlib
- Start a JupyterLab server, setting a
port
and atoken
to be reused by the agent, and create a notebooktest.ipynb
.
jupyter lab --port 8888 --IdentityProvider.token MY_TOKEN
- Open a Python REPL and execute the following snippet to add a cell.
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
with NbModelClient(
get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
) as notebook:
notebook.add_code_cell("print('hello world')")
Check
test.ipynb
in JupyterLab.
- The previous example does not involve kernels. Put that now in the picture, adding a cell and executing within a kernel process.
from jupyter_kernel_client import KernelClient
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
with KernelClient(server_url="http://localhost:8888", token="MY_TOKEN") as kernel:
with NbModelClient(
get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
) as notebook:
cell_index = notebook.add_code_cell("print('hello world')")
results = notebook.execute_cell(cell_index, kernel)
assert results["status"] == "ok"
assert len(results["outputs"]) > 0
Check
test.ipynb
in JupyterLab.
You can go further and create a plot with Matplotlib.
from jupyter_kernel_client import KernelClient
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
CODE = """import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fruits = ['apple', 'blueberry', 'cherry', 'orange']
counts = [40, 100, 30, 55]
bar_labels = ['red', 'blue', '_red', 'orange']
bar_colors = ['tab:red', 'tab:blue', 'tab:red', 'tab:orange']
ax.bar(fruits, counts, label=bar_labels, color=bar_colors)
ax.set_ylabel('fruit supply')
ax.set_title('Fruit supply by kind and color')
ax.legend(title='Fruit color')
plt.show()
"""
with KernelClient(server_url="http://localhost:8888", token="MY_TOKEN") as kernel:
with NbModelClient(
get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
) as notebook:
cell_index = notebook.add_code_cell(CODE)
results = notebook.execute_cell(cell_index, kernel)
assert results["status"] == "ok"
assert len(results["outputs"]) > 0
Check
test.ipynb
in JupyterLab.
Note
Instead of using the clients as context manager, you can call the start()
and stop()
methods.
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
kernel = KernelClient(server_url="http://localhost:8888", token="MY_TOKEN")
kernel.start()
try:
notebook = NbModelClient(
get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
)
notebook.start()
try:
cell_index = notebook.add_code_cell("print('hello world')")
results = notebook.execute_cell(cell_index, kernel)
finally:
notebook.stop()
finally:
kernel.stop()
To remove the library, run the following.
pip uninstall jupyter_nbmodel_client
The following json schema describe the data model used in cells and notebook metadata to communicate between user clients and the ai agent.
{
"datalayer": {
"type": "object",
"properties": {
"ai": {
"type": "object",
"properties": {
"prompts": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {
"title": "Prompt unique identifier",
"type": "string"
},
"prompt": {
"title": "User prompt",
"type": "string"
},
"username": {
"title": "Unique identifier of the user making the prompt.",
"type": "string"
}
},
"required": ["id", "prompt"]
}
},
"messages": {
"type": "array",
"items": {
"type": "object",
"properties": {
"parent_id": {
"title": "Prompt unique identifier",
"type": "string"
},
"message": {
"title": "AI reply",
"type": "string"
},
"type": {
"title": "Type message",
"enum": [0, 1, 2]
}
},
"required": ["id", "prompt"]
}
}
}
}
}
}
}
# Clone the repo to your local environment
# Change directory to the jupyter_nbmodel_client directory
# Install package in development mode - will automatically enable
# The server extension.
pip install -e ".[test,lint,typing]"
Install dependencies:
pip install -e ".[test]"
To run the python tests, use:
pytest
pip uninstall jupyter_nbmodel_client
See RELEASE