generated from datapages/datapage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.qmd
54 lines (36 loc) · 1.41 KB
/
analysis.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
## Programmatic access
You can access the {{< meta redivis.dataset >}} data programmatically using the Redivis API for [R](https://apidocs.redivis.com/client-libraries/redivis-r) or [Python](https://apidocs.redivis.com/client-libraries/redivis-python).
::: {.panel-tabset}
## R
1. Install the redivis-r package:
```{.r}
devtools::install_github("redivis/redivis-r")
```
2. [Generate and set an API token](https://apidocs.redivis.com/client-libraries/redivis-r/getting-started#authentication).
3. Access the data:
```{.r}
library(redivis)
user <- redivis::user("{{< meta redivis.user >}}")
dataset <- user$dataset("{{< meta redivis.dataset >}}")
table <- dataset$table("{{< meta redivis.table >}}")
# Load table as tidyverse tibble
df <- table$to_tibble()
```
[View documentation](https://apidocs.redivis.com/client-libraries/redivis-r)
## Python
1. Install the redivis-python client library:
```{.python}
pip install --upgrade redivis
```
2. [Generate and set an API token](https://apidocs.redivis.com/client-libraries/redivis-python/getting-started#authentication).
3. Access the data:
```{.python}
import redivis
user = redivis.user("{{< meta redivis.user >}}")
dataset = user.dataset("{{< meta redivis.dataset >}}")
table = dataset.table("{{< meta redivis.table >}}")
# Load table as a dataframe
df = table.to_pandas_dataframe()
```
[View documentation](https://apidocs.redivis.com/client-libraries/redivis-python)
:::