-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathMakefile
60 lines (44 loc) · 2.17 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
.PHONY: help create_environment requirements train predict
.DEFAULT_GOAL := help
###############################################################
# GLOBALS #
###############################################################
NO_OF_TEST_FILES := $(words $(wildcard tests/test_*.py))
NO_OF_REPORT_FILES := $(words $(wildcard reports/))
NO_OF_REPORT_FILES := $(words $(filter-out reports/.gitkeep, $(SRC_FILES)))
DATASET := data/transformed/creditcard.csv
###############################################################
# COMMANDS #
###############################################################
install: ## install dependencies
pip install -e ".[test, serve]"
clean: ## clean artifacts
@echo ">>> cleaning files"
rm ./data/predictions/* ./data/transformed/* ./models/*.joblib || true
generate-dataset: $(DATASET)
$(DATASET):
@echo ">>> generating dataset"
python ./scripts/generate_dataset.py $(ARGS)
train: $(DATASET) ## train the model, you can pass arguments as follows: make ARGS="--foo 10 --bar 20" train
@echo ">>> training model"
python ./scripts/train.py $(ARGS)
serve: ## serve trained model with a REST API using dploy-kickstart
@echo ">>> serving the trained model"
kickstart serve -e ml_skeleton_py/model/predict.py -l .
run-pipeline: install clean generate-dataset train serve ## install dependencies -> clean artifacts -> generate dataset -> train -> serve
lint: ## flake8 linting and black code style
@echo ">>> black files"
black scripts ml_skeleton_py tests
@echo ">>> linting files"
flake8 scripts ml_skeleton_py tests
coverage: ## create coverage report
@echo ">>> running coverage pytest"
pytest --cov=./ --cov-report=xml
test: ## run unit tests in the current virtual environment
@echo ">>> running unit tests with the existing environment"
pytest
test-docker: ## run unit tests in docker environment
@echo ">>> running unit tests in an isolated docker environment"
docker-compose up test
help: ## show help on available commands
@grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}'