forked from mapbox/polylabel
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolylabel.js
180 lines (141 loc) · 5.38 KB
/
polylabel.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
'use strict';
var Queue = require('tinyqueue');
if (Queue.default) Queue = Queue.default; // temporary webpack fix
module.exports = polylabel;
module.exports.default = polylabel;
function polylabel(polygon, precision, debug, centroidWeight) {
precision = precision || 1.0;
centroidWeight = centroidWeight || 0;
// find the bounding box of the outer ring
var minX, minY, maxX, maxY;
for (var i = 0; i < polygon[0].length; i++) {
var p = polygon[0][i];
if (!i || p[0] < minX) minX = p[0];
if (!i || p[1] < minY) minY = p[1];
if (!i || p[0] > maxX) maxX = p[0];
if (!i || p[1] > maxY) maxY = p[1];
}
var width = maxX - minX;
var height = maxY - minY;
var cellSize = Math.min(width, height);
var h = cellSize / 2;
if (cellSize === 0) {
var degeneratePoleOfInaccessibility = [minX, minY];
degeneratePoleOfInaccessibility.distance = 0;
return degeneratePoleOfInaccessibility;
}
// a priority queue of cells in order of their "potential" (max distance to polygon)
var cellQueue = new Queue(undefined, compareMax);
var centroidCell = getCentroidCell(polygon);
// take centroid as the first best guess
var bestCell = centroidCell;
// cover polygon with initial cells
for (var x = minX; x < maxX; x += cellSize) {
for (var y = minY; y < maxY; y += cellSize) {
cellQueue.push(new Cell(x + h, y + h, h, polygon, centroidCell));
}
}
// the fitness function to be maximized
function fitness(cell) {
return cell.d - cell.distanceToCentroid * centroidWeight;
}
// special case for rectangular polygons
var bboxCell = new Cell(minX + width / 2, minY + height / 2, 0, polygon, centroidCell);
if (fitness(bboxCell) > fitness(bestCell)) bestCell = bboxCell;
var numProbes = cellQueue.length;
while (cellQueue.length) {
// pick the most promising cell from the queue
var cell = cellQueue.pop();
// update the best cell if we found a better one
if (fitness(cell) > fitness(bestCell)) {
bestCell = cell;
if (debug) console.log('found best %d after %d probes', Math.round(1e4 * cell.d) / 1e4, numProbes);
}
// do not drill down further if there's no chance of a better solution
if (cell.max - bestCell.d <= precision) continue;
// split the cell into four cells
h = cell.h / 2;
cellQueue.push(new Cell(cell.x - h, cell.y - h, h, polygon, centroidCell));
cellQueue.push(new Cell(cell.x + h, cell.y - h, h, polygon, centroidCell));
cellQueue.push(new Cell(cell.x - h, cell.y + h, h, polygon, centroidCell));
cellQueue.push(new Cell(cell.x + h, cell.y + h, h, polygon, centroidCell));
numProbes += 4;
}
if (debug) {
console.log('num probes: ' + numProbes);
console.log('best distance: ' + bestCell.d);
}
var poleOfInaccessibility = [bestCell.x, bestCell.y];
poleOfInaccessibility.distance = bestCell.d;
return poleOfInaccessibility;
}
function compareMax(a, b) {
return b.max - a.max;
}
function Cell(x, y, h, polygon, centroidCell) {
this.x = x; // cell center x
this.y = y; // cell center y
this.h = h; // half the cell size
this.d = pointToPolygonDist(x, y, polygon); // distance from cell center to polygon
this.distanceToCentroid = centroidCell ? pointToPointDist(this, centroidCell) : 0;
this.max = this.d + this.h * Math.SQRT2; // max distance to polygon within a cell
}
// distance between two cells
function pointToPointDist(cellA, cellB) {
var dx = cellB.x - cellA.x;
var dy = cellB.y - cellA.y;
return Math.sqrt(dx * dx + dy * dy);
}
// signed distance from point to polygon outline (negative if point is outside)
function pointToPolygonDist(x, y, polygon) {
var inside = false;
var minDistSq = Infinity;
for (var k = 0; k < polygon.length; k++) {
var ring = polygon[k];
for (var i = 0, len = ring.length, j = len - 1; i < len; j = i++) {
var a = ring[i];
var b = ring[j];
if ((a[1] > y !== b[1] > y) &&
(x < (b[0] - a[0]) * (y - a[1]) / (b[1] - a[1]) + a[0])) inside = !inside;
minDistSq = Math.min(minDistSq, getSegDistSq(x, y, a, b));
}
}
return minDistSq === 0 ? 0 : (inside ? 1 : -1) * Math.sqrt(minDistSq);
}
// get polygon centroid
function getCentroidCell(polygon) {
var area = 0;
var x = 0;
var y = 0;
var points = polygon[0];
for (var i = 0, len = points.length, j = len - 1; i < len; j = i++) {
var a = points[i];
var b = points[j];
var f = a[0] * b[1] - b[0] * a[1];
x += (a[0] + b[0]) * f;
y += (a[1] + b[1]) * f;
area += f * 3;
}
if (area === 0) return new Cell(points[0][0], points[0][1], 0, polygon);
return new Cell(x / area, y / area, 0, polygon);
}
// get squared distance from a point to a segment
function getSegDistSq(px, py, a, b) {
var x = a[0];
var y = a[1];
var dx = b[0] - x;
var dy = b[1] - y;
if (dx !== 0 || dy !== 0) {
var t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = b[0];
y = b[1];
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = px - x;
dy = py - y;
return dx * dx + dy * dy;
}