-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdsp.py
98 lines (87 loc) · 2.72 KB
/
dsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import scipy.signal as signal
import cmath
import pylab as pl
from scipy.signal import freqz
def filter_length(fs, f, c1, c2, dB=True):
nyq = fs/2
fc = float(f)/nyq
leg_p = []
leg_l = []
for i in range(5, 13):
n = 2**i-1
h = signal.firwin(n, cutoff=fc, window='hamming')
w, H = signal.freqz(h, 1, 4096)
if dB:
H = 20 * pl.log10 (abs(H[:]))
else:
H = abs(H[:])
p, = pl.plot(nyq*w/pl.pi, H)
leg_p.append(p)
leg_l.append('n={0}'.format(n))
pl.legend(leg_p, leg_l)
pl.axvline(x=c1, linewidth=1, color='k', ls='-')
pl.axvline(x=c2, linewidth=1, color='k', ls='-')
def view_filter(h, fp=None, fs=None):
'''view filter'''
w, H = signal.freqz(h,1)
H_phase = pl.unwrap([pl.degrees(cmath.phase(H[i])) for i in range(len(H))], 180)
H = 20 * pl.log10 (abs(H[:]))
x = range(0,len(h))
step = pl.cumsum(h)
pl.figure(figsize=(16, 6.6), dpi=80)
pl.subplot(221)
pl.stem(x, h)
pl.ylabel('Amplitude')
pl.xlabel(r'n (samples)')
pl.title(r'Impulse response')
pl.text(0.2, 0.7, 'N_taps = {0}'.format(len(h)))
pl.subplot(222)
pl.stem(x, step)
pl.ylabel('Amplitude')
pl.xlabel(r'n (samples)')
pl.title(r'Step response')
pl.subplot(223)
pl.plot(w/(2.0*pl.pi), H)
pl.ylabel('Magnitude (db)')
pl.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
pl.title(r'Frequency response')
if fp != None:
pl.axvline(fp, linewidth=1, color='k', ls='-')
if fs != None:
pl.axvline(fs, linewidth=1, color='k', ls='-')
pl.subplot(224)
pl.plot(w/(2.0*pl.pi), H_phase)
pl.ylabel('Phase (radians)')
pl.xlabel(r'Normalized Frequency (Hz)')
pl.title(r'Phase response')
def view_freq(h, fp=None, fs=None, log=True):
'''view filter'''
w, H = signal.freqz(h,1)
H = abs(H[:])
if log == True:
H = 20 * pl.log10(H[:])
pl.figure(figsize=(16, 6.6), dpi=80)
pl.subplot(111)
pl.plot(w/(2.0*pl.pi), H)
pl.ylabel('Magnitude (db)')
pl.xlabel(r'Normalized Frequency (Hz)')
pl.title(r'Frequency response')
if fp != None:
pl.axvline(fp, linewidth=1, color='k', ls='-')
if fs != None:
pl.axvline(fs, linewidth=1, color='k', ls='-')
def remez(numtaps, bands, desired, weight=None, Hz=1, type='bandpass', maxiter=25, grid_density=16, numtaps_max=256):
from scipy.signal.fir_filter_design import remez as _remez
try:
return _remez(numtaps, bands, desired, weight=weight, Hz=Hz, type=type, maxiter=maxiter, grid_density=grid_density)
except:
N = []
for n in range(0, numtaps_max+1):
try:
h = _remez(n, bands, desired, weight=weight, Hz=Hz, type=type, maxiter=maxiter, grid_density=grid_density)
N.append(n)
except:
pass
print 'Did not converge for {0} taps.'.format(numtaps)
print 'Will converge for the following:'
print N