-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathfimo_vcf.py
executable file
·226 lines (177 loc) · 6.81 KB
/
fimo_vcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python
from optparse import OptionParser
from collections import OrderedDict
import os
import pdb
import shutil
import sys
import numpy as np
from scipy.sparse import csc_matrix, dok_matrix
import pysam
import util
'''
fimo_vcf.py
Score a VCF file for motif changes.
'''
################################################################################
# main
################################################################################
def main():
usage = 'usage: %prog [options] <fasta_file> <vcf_file>'
parser = OptionParser(usage)
parser.add_option('-d', dest='database',
default='%s/jaspar/jaspar2020_core_meme.txt' % os.environ['HG38'])
parser.add_option('-m', dest='motif',
default=None, help='Motif subset [Default: %default]')
parser.add_option('-o', dest='out_dir',
default='fimo_vcf')
parser.add_option('-p', dest='pvalue_t',
default=1e-4, type='float')
parser.add_option('-w', dest='width',
default=25, type='int',
help='Width to search for motifs [Default: %default]')
(options,args) = parser.parse_args()
if len(args) != 2:
parser.error('')
else:
fasta_file = args[0]
vcf_file = args[1]
if not os.path.isdir(options.out_dir):
os.mkdir(options.out_dir)
assert(options.width % 2 == 1)
half_width = options.width // 2
##################################################################
# allele fasta
fasta_open = pysam.Fastafile(fasta_file)
fasta_ref_file = '%s/ref.fa' % options.out_dir
fasta_ref_out = open(fasta_ref_file, 'w')
fasta_alt_file = '%s/alt.fa' % options.out_dir
fasta_alt_out = open(fasta_alt_file, 'w')
snp_indexes = OrderedDict()
si = 0
for line in open(vcf_file):
if line[0] != '#':
a = line.split('\t')
chrm = a[0]
pos = int(a[1])
snp_id = a[2]
ref_nt = a[3]
alt_nt = a[4]
if len(ref_nt) > 1 or len(alt_nt) > 1:
print('Indels not implemented.', file=sys.stderr)
exit(1)
else:
seq_start = pos-1-half_width
seq_end = seq_start+options.width
seq_ref = fasta_open.fetch(chrm, seq_start, seq_end)
snp_indexes[snp_id] = si
si += 1
seq_ref_nt = seq_ref[half_width]
if seq_ref_nt != ref_nt:
print('FASTA ref %s does not match VCF ref %s' % (seq_ref_nt,ref_nt), file=sys.stderr)
exit(1)
else:
seq_alt = seq_ref[:half_width] + alt_nt + seq_ref[half_width+1:]
assert(len(seq_ref) == len(seq_alt))
print('>%s\n%s' % (snp_id,seq_ref), file=fasta_ref_out)
print('>%s\n%s' % (snp_id,seq_alt), file=fasta_alt_out)
fasta_ref_out.close()
fasta_alt_out.close()
fasta_open.close()
##################################################################
# FIMO
# clean dir
fimo_ref_dir = '%s/fimo_ref' % options.out_dir
if os.path.isdir(fimo_ref_dir):
shutil.rmtree(fimo_ref_dir)
fimo_alt_dir = '%s/fimo_alt' % options.out_dir
if os.path.isdir(fimo_alt_dir):
shutil.rmtree(fimo_alt_dir)
fimo_pvalue_t = 10*options.pvalue_t
fimo_opts = '--thresh %e' % fimo_pvalue_t
if options.motif is not None:
fimo_opts += ' --motif %s' % options.motif
cmd_ref = 'fimo %s -o %s %s %s 2> %s.err' % (fimo_opts, fimo_ref_dir, options.database, fasta_ref_file, fimo_ref_dir)
cmd_alt = 'fimo %s -o %s %s %s 2> %s.err' % (fimo_opts, fimo_alt_dir, options.database, fasta_alt_file, fimo_alt_dir)
util.exec_par([cmd_ref,cmd_alt])
# index motifs
if options.motif is not None:
motif_indexes = {options.motif: 0}
else:
motif_indexes = OrderedDict()
mi = 0
for line in open(options.database):
if line.startswith('MOTIF'):
a = line.split()
motif_indexes[a[1]] = mi
mi += 1
# read output
ref_fimo_file = '%s/fimo.tsv' % fimo_ref_dir
alt_fimo_file = '%s/fimo.tsv' % fimo_alt_dir
ref_motif_score, ref_motif_nlp = read_fimo_output(ref_fimo_file, snp_indexes, motif_indexes)
alt_motif_score, alt_motif_nlp = read_fimo_output(alt_fimo_file, snp_indexes, motif_indexes)
##################################################################
# compute scores
# convert to csc
ref_motif_score = ref_motif_score.tocsc()
alt_motif_score = alt_motif_score.tocsc()
snp_motif_score = dok_matrix(ref_motif_score.shape, dtype='float32')
# snp_motif_nlp = csc_matrix(ref_motif_score.shape, dtype='float32')
nlp_t = -np.log10(options.pvalue_t)
snp_motif_nlp = ref_motif_nlp.maximum(alt_motif_nlp)
snp_motif_mask = (snp_motif_nlp >= nlp_t)
for motif_id, mi in motif_indexes.items():
# extract motif score vectors
ref_scores = ref_motif_score[:,mi].toarray()
alt_scores = alt_motif_score[:,mi].toarray()
# clip to min score
min_score = min(ref_scores.min(), alt_scores.min())
ref_scores = np.clip(ref_scores, min_score, np.inf)
alt_scores = np.clip(alt_scores, min_score, np.inf)
# compute differences
snp_scores = alt_scores - ref_scores
# save p-value
snp_mask = snp_motif_mask[:,mi]
snp_nlp = snp_motif_nlp[:,mi]
snp_nlp_mask = snp_mask.multiply(snp_nlp)
snp_motif_nlp[:,mi] = snp_nlp_mask
# save score
snp_scores_mask = snp_mask.multiply(snp_scores)
#snp_scores_mask = np.expand_dims(snp_scores_mask,-1)
snp_motif_score[:,mi] = snp_scores_mask
##################################################################
# output
table_out = open('%s/table.txt' % options.out_dir, 'w')
for motif_id, mi in motif_indexes.items():
snp_score = snp_motif_score[:,mi].toarray().squeeze()
snp_nlp = snp_motif_nlp[:,mi].toarray().squeeze()
snp_value = np.power(10,-snp_nlp)
for snp_id, si in snp_indexes.items():
cols = [snp_id, motif_id, '%.3f'%snp_score[si], '%.1e'%snp_value[si]]
print('\t'.join(cols), file=table_out)
table_out.close()
def read_fimo_output(fimo_out_file, snp_indexes, motif_indexes):
num_snps = len(snp_indexes)
num_motifs = len(motif_indexes)
snp_motif_score = dok_matrix((num_snps,num_motifs), dtype='float32')
snp_motif_nlp = dok_matrix((num_snps,num_motifs), dtype='float32')
fimo_out_open = open(fimo_out_file)
fimo_out_open.readline()
for line in fimo_out_open:
a = line.split()
if len(a) > 0 and line[0] != '#':
motif_id = a[0]
snp_id = a[2]
score = float(a[6])
pval = float(a[7])
si = snp_indexes[snp_id]
mi = motif_indexes[motif_id]
snp_motif_score[si,mi] = max(score, snp_motif_score[si,mi])
snp_motif_nlp[si,mi] = max(-np.log10(pval), snp_motif_nlp[si,mi])
fimo_out_open.close()
return snp_motif_score, snp_motif_nlp
################################################################################
# __main__
################################################################################
if __name__ == '__main__':
main()