-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgtf_add_introns.py
executable file
·261 lines (209 loc) · 8.23 KB
/
gtf_add_introns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
from optparse import OptionParser
import copy, os, subprocess, tempfile
################################################################################
# gtf_add_introns.py
#
# Add exon-intron-exon isoforms to a GTF file, and return only exons.
#
# WARNING: Output GTF is unsorted.
################################################################################
################################################################################
# main
################################################################################
def main():
usage = 'usage: %prog [options] <ref_gtf>'
parser = OptionParser(usage)
parser.add_option('-e', dest='exons_adjacent', default=False, action='store_true', help='Include adjacent exons with every intron isoform [Default: %default]')
(options,args) = parser.parse_args()
if len(args) != 1:
parser.error('Must provide GTF file')
else:
ref_gtf = args[0]
transcripts = read_genes(ref_gtf, key_id='transcript_id')
g2t_map = g2t(ref_gtf)
############################################
# make new gtf
############################################
intron_index = 0
for gene_id in g2t_map:
# make introns
raw_introns = set()
for transcript_id in g2t_map[gene_id]:
if transcript_id in transcripts:
tx = transcripts[transcript_id]
for i in range(len(tx.exons)-1):
if options.exons_adjacent:
istart = tx.exons[i].start
iend = tx.exons[i+1].end
else:
istart = tx.exons[i].end+1
iend = tx.exons[i+1].start-1
raw_introns.add((istart,iend))
# filter highly redundant intron isoforms
introns = filter_introns(raw_introns)
# print exon isoforms
for transcript_id in g2t_map[gene_id]:
if transcript_id in transcripts:
tx = transcripts[transcript_id]
for i in range(len(tx.exons)):
cols = (tx.chrom, 'dk', 'exon', str(tx.exons[i].start), str(tx.exons[i].end), '.', tx.strand, '.', kv_gtf(tx.kv))
print '\t'.join(cols)
# print intron isoforms
for istart, iend in introns:
pre_kv = copy.copy(tx.kv)
pre_kv['transcript_id'] = 'INTRON%d' % intron_index
pre_kv['transcript_type'] = 'intron'
intron_index += 1
cols = (tx.chrom, 'dk', 'exon', str(istart), str(iend), '.', tx.strand, '.', kv_gtf(pre_kv))
print '\t'.join(cols)
################################################################################
# filter_introns
#
# Collapse clusters of highly similar introns.
################################################################################
def filter_introns(raw_introns, overlap_diff=5):
# initialize a cluster for every intron
cluster_map = {}
for i in range(len(raw_introns)):
cluster_map[i] = i
clusters = {}
for i in range(len(raw_introns)):
clusters[i] = set([i])
# recklessly merge intron clusters
introns_list = list(raw_introns)
for i in range(len(raw_introns)):
for j in range(i+1,len(raw_introns)):
start_i, end_i = introns_list[i]
start_j, end_j = introns_list[j]
overlap = min(end_i, end_j) - max(start_i, start_j) + 1
if overlap > 0:
diff_i = abs(overlap - (end_i - start_i + 1))
diff_j = abs(overlap - (end_j - start_j + 1))
if diff_i <= overlap_diff and diff_j <= overlap_diff:
cluster_j = cluster_map[j]
# move cluster j to cluster i
for k in clusters[cluster_j]:
# add it to i's cluster
clusters[cluster_map[i]].add(k)
# re-map it to i's cluster
cluster_map[k] = cluster_map[i]
# erase cluster j
clusters[cluster_j] = set()
# return one intron per cluster
final_introns = set()
for i in range(len(raw_introns)):
if len(clusters[i]) > 0:
final_introns.add(introns_list[list(clusters[i])[0]])
return final_introns
################################################################################
# gtf_kv
#
# Convert the last gtf section of key/value pairs into a dict.
################################################################################
def gtf_kv(s):
d = {}
a = s.split(';')
for key_val in a:
if key_val.strip():
eq_i = key_val.find('=')
if eq_i != -1 and key_val[eq_i-1] != '"':
kvs = key_val.split('=')
else:
kvs = key_val.split()
if len(kvs) == 2:
key = kvs[0]
if kvs[1][0] == '"' and kvs[1][-1] == '"':
val = kvs[1].strip()[1:-1]
else:
val = kvs[1].strip()
d[key] = val
return d
################################################################################
# g2t
#
# Given a gtf file, return a mapping of gene_id's to sets of transcript_id's
################################################################################
def g2t(gtf_file):
d = {}
gtf_in = open(gtf_file)
# ignore header
line = gtf_in.readline()
while line[:2] == '##':
line = gtf_in.readline()
for line in gtf_in:
a = line.split('\t')
kv = gtf_kv(a[8])
d.setdefault(kv['gene_id'],set()).add(kv['transcript_id'])
return d
################################################################################
# kv_gtf
#
# Convert a kv hash to str gtf representation.
################################################################################
def kv_gtf(d):
s = ''
for key in sorted(d.keys()):
s += '%s "%s"; ' % (key,d[key])
return s
################################################################################
# read_genes
#
# Parse a gtf file and return a set of Gene objects in a hash keyed by the
# id given.
################################################################################
def read_genes(gtf_file, key_id='transcript_id', sort=True):
genes = {}
gtf_in = open(gtf_file)
# ignore header
line = gtf_in.readline()
while line[:2] == '##':
line = gtf_in.readline()
while line:
a = line.split('\t')
if a[2] == 'exon':
kv = gtf_kv(a[8])
if not kv[key_id] in genes:
genes[kv[key_id]] = Gene(a[0], a[6], kv)
genes[kv[key_id]].add_exon(int(a[3]), int(a[4]), sort=sort)
line = gtf_in.readline()
gtf_in.close()
return genes
################################################################################
# Gene
################################################################################
class Gene:
def __init__(self, chrom, strand, kv):
self.chrom = chrom
self.strand = strand
self.kv = kv
self.exons = []
def add_exon(self, start, end, sort=True):
self.exons.append(Exon(start,end))
if sort and len(self.exons) > 1 and self.exons[-2].end > start:
#print >> sys.stderr, 'Warning: exons are not sorted - %s' % kv_gtf(self.kv)
self.exons.sort()
def __str__(self):
return '%s %s %s %s' % (self.chrom, self.strand, kv_gtf(self.kv), ','.join([ex.__str__() for ex in self.exons]))
################################################################################
# Exon
################################################################################
class Exon:
def __init__(self, start, end):
self.start = start
self.end = end
def __cmp__(self, x):
if self.start < x.start:
return -1
elif self.start > x.start:
return 1
else:
return 0
def __str__(self):
return 'exon(%d-%d)' % (self.start,self.end)
################################################################################
# __main__
################################################################################
if __name__ == '__main__':
main()
#pdb.runcall(main)