-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbest_model.py
178 lines (140 loc) · 5.3 KB
/
best_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchsummary import summary
import os
import argparse
from models.dropoutresnet import DropoutResNet18
def train(epoch):
print('\nEpoch: %d' % epoch)
# switch to train mode
net.train()
train_loss = 0
correct = 0
total = 0
# start training epoch
for batch_idx, (inputs, targets) in enumerate(trainloader):
# move to device
inputs, targets = inputs.to(device), targets.to(device)
# forward pass
optimizer.zero_grad()
outputs = net(inputs)
# backpropogate
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# calculate loss and accuracy
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
# switch to eval mode
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
# start test epoch
inputs, targets = inputs.to(device), targets.to(device)
# forward pass
outputs = net(inputs)
# calculate loss and accuracy
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
# Save best epoch checkpoint
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/best_epoch.pth')
best_acc = acc
# Save model
if epoch == 199:
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(state, './checkpoint/final_best.pth')
if __name__ == '__main__':
# Parse arguments
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
args = parser.parse_args()
# Load variabels for training
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
print('==> Preparing data..')
# Data augmentation and normalization for training
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
# Create dataloaders
trainset = torchvision.datasets.CIFAR10(
root='./deep-learning-mini-project-spring-24-nyu/cifar-10-python', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
# Load dataset with tranformation
testset = torchvision.datasets.CIFAR10(
root='./deep-learning-mini-project-spring-24-nyu/cifar-10-python', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
# List of classes
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
print('==> Building model..')
# Initialize the model
net = DropoutResNet18(0.4)
net = net.to(device)
# If the model is on cuda, use DataParallel
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
# Load command line arguments
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/best_epoch.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
# Print out the model parameters
summary(net, (3,32,32))
# Running Training and Inference
for epoch in range(start_epoch, 200):
train(epoch)
test(epoch)
scheduler.step()