-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (73 loc) · 3.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import random
import ray
from ray import tune
from ray.tune.registry import register_env
from src.callbacks import win_matrix_on_episode_end
from src.policies import HumanPolicy, RandomPolicy
from src.utils import get_worker_config, get_learner_policy_configs, get_mcts_policy_configs, get_model_config, \
get_policy_config
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--policy', type=str, default='PPO')
parser.add_argument('--use-cnn', action='store_true')
parser.add_argument('--num-learners', type=int, default=2)
# e.g. --restore="/home/dave/ray_results/main/PPO_c4_0_2019-09-23_16-17-45z9x1oc9j/checkpoint_782/checkpoint-782"
parser.add_argument('--restore', type=str)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--human', action='store_true')
args = parser.parse_args()
ray.init(local_mode=args.debug)
tune_config = get_worker_config(args)
tune_config.update(get_policy_config(args.policy))
model_config, env_cls = get_model_config(args.use_cnn)
register_env('c4', lambda cfg: env_cls(cfg))
env = env_cls()
obs_space, action_space = env.observation_space, env.action_space
trainable_policies = get_learner_policy_configs(args.num_learners, obs_space, action_space, model_config)
mcts_policies = get_mcts_policy_configs([8, 16, 32, 64, 128, 256, 512], obs_space, action_space)
def random_policy_mapping_fn(info):
if args.human:
return random.sample(['learned00', 'human'], k=2)
elif args.num_learners == 1:
return ['learned00', 'learned00']
else:
return random.sample([*trainable_policies], k=2)
policy_mapping_fn = random_policy_mapping_fn if args.num_learners > 1 else lambda _: ('learned00', 'learned00')
def name_trial(trial):
"""Give trials a more readable name in terminal & Tensorboard."""
return f'{args.num_learners}x{trial.trainable_name}'
tune.run(
args.policy,
name='main',
trial_name_creator=name_trial,
stop={
'timesteps_total': int(100e6),
# 'timesteps_total': int(1e9),
},
config=dict({
'env': 'c4',
'env_config': {},
# 'gamma': tune.grid_search([0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.99, 0.999, 0.9999, 1.0]),
'multiagent': {
'policies_to_train': [*trainable_policies],
'policy_mapping_fn': random_policy_mapping_fn,
# 'policy_mapping_fn': policy_mapping_fn,
# 'policy_mapping_fn': lambda agent_id: ['learned', 'human'][agent_id % 2],
# 'policy_mapping_fn': lambda _: 'random',
'policies': {
**trainable_policies,
**mcts_policies,
'human': (HumanPolicy, obs_space, action_space, {}),
'random': (RandomPolicy, obs_space, action_space, {}),
},
},
# 'callbacks': {
# 'on_episode_end': win_matrix_on_episode_end,
# },
}, **tune_config),
# checkpoint_freq=100,
checkpoint_at_end=True,
# resume=True,
restore=args.restore,
)