generated from fspoettel/advent-of-code-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path22.rs
233 lines (192 loc) · 5.96 KB
/
22.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use std::{
cell::RefCell,
collections::{HashMap, HashSet},
hash::Hash,
rc::{Rc, Weak},
};
advent_of_code::solution!(22);
pub fn part_one(input: &str) -> Option<u16> {
let brick_stack = BrickStack::from_input(input);
Some(brick_stack.redundant_bricks_count())
}
pub fn part_two(input: &str) -> Option<u32> {
let brick_stack = BrickStack::from_input(input);
Some(brick_stack.dependants_count())
}
struct BrickStack {
bricks: Vec<Rc<Brick>>,
}
impl BrickStack {
fn from_input(input: &str) -> BrickStack {
let mut max_occupied_zs: HashMap<FlatPosition, (i16, Rc<Brick>)> = HashMap::new();
let mut bricks = input
.lines()
.map(|line| Rc::new(Brick::from_line(line)))
.collect::<Vec<_>>();
bricks.sort_by_key(|brick| brick.min_z());
for brick in &mut bricks {
let mut min_z = 1;
let mut supported_by = Vec::new();
for position in brick.walk_x_y() {
if let Some((occupied_z, brick)) = max_occupied_zs.get(&position) {
if *occupied_z >= min_z {
min_z = occupied_z + 1;
supported_by = vec![Rc::clone(brick)];
} else if *occupied_z == min_z - 1 && !supported_by.contains(brick) {
supported_by.push(Rc::clone(brick));
}
}
}
*brick = Rc::new(brick.to_stationary(min_z, supported_by));
let brick_max_z = brick.max_z();
for position in brick.walk_x_y() {
max_occupied_zs.insert(position, (brick_max_z, Rc::clone(brick)));
}
}
for brick_top in &bricks {
for brick in &brick_top.supported_by {
brick.supports.borrow_mut().push(Rc::downgrade(brick_top));
}
}
BrickStack { bricks }
}
fn redundant_bricks_count(&self) -> u16 {
self.bricks
.iter()
.filter(|brick| brick.is_redundant())
.count() as u16
}
fn dependants_count(&self) -> u32 {
self.bricks
.iter()
.map(|brick| {
let mut dependants =
HashSet::from_iter(brick.supported_by.iter().map(|brick| brick.hashable()));
Self::dependants_count_recursive(brick, &mut dependants) - 1
})
.sum()
}
fn dependants_count_recursive(
brick: &Rc<Brick>,
dependants: &mut HashSet<HashableBrick>,
) -> u32 {
if brick
.supported_by
.iter()
.any(|brick| !dependants.contains(&brick.hashable()))
{
return 0;
}
dependants.insert(brick.hashable());
let count = brick
.supports
.borrow()
.iter()
.map(|brick| Self::dependants_count_recursive(&brick.upgrade().unwrap(), dependants))
.sum::<u32>()
+ 1;
count
}
}
struct Brick {
start: Position,
end: Position,
supported_by: Vec<Rc<Brick>>,
supports: RefCell<Vec<Weak<Brick>>>,
}
impl Brick {
fn from_line(line: &str) -> Brick {
let mut parts_iterator = line.split('~');
let mut start_iterator = parts_iterator.next().unwrap().split(',');
let mut end_iterator = parts_iterator.next().unwrap().split(',');
Brick {
start: Position {
x: start_iterator.next().unwrap().parse().unwrap(),
y: start_iterator.next().unwrap().parse().unwrap(),
z: start_iterator.next().unwrap().parse().unwrap(),
},
end: Position {
x: end_iterator.next().unwrap().parse().unwrap(),
y: end_iterator.next().unwrap().parse().unwrap(),
z: end_iterator.next().unwrap().parse().unwrap(),
},
supported_by: Vec::new(),
supports: RefCell::new(Vec::new()),
}
}
fn to_stationary(&self, z: i16, supported_by: Vec<Rc<Brick>>) -> Brick {
let z_difference = z - self.start.z.min(self.end.z);
Brick {
start: self.start.to_translated_z(z_difference),
end: self.end.to_translated_z(z_difference),
supported_by,
supports: RefCell::new(Vec::new()),
}
}
fn walk_x_y(&self) -> impl Iterator<Item = FlatPosition> + '_ {
(self.start.x..=self.end.x)
.flat_map(move |x| (self.start.y..=self.end.y).map(move |y| FlatPosition { x, y }))
}
fn min_z(&self) -> i16 {
self.start.z.min(self.end.z)
}
fn max_z(&self) -> i16 {
self.start.z.max(self.end.z)
}
fn is_redundant(&self) -> bool {
self.supports
.borrow()
.iter()
.all(|brick| brick.upgrade().unwrap().supported_by.len() > 1)
}
fn hashable(&self) -> HashableBrick {
HashableBrick {
start: self.start.clone(),
end: self.end.clone(),
}
}
}
impl PartialEq for Brick {
fn eq(&self, other: &Self) -> bool {
self.start == other.start && self.end == other.end
}
}
#[derive(Hash, Eq, PartialEq, Clone)]
struct HashableBrick {
start: Position,
end: Position,
}
#[derive(Hash, Eq, PartialEq, Clone)]
struct Position {
x: i16,
y: i16,
z: i16,
}
impl Position {
fn to_translated_z(&self, z: i16) -> Position {
Position {
x: self.x,
y: self.y,
z: self.z + z,
}
}
}
#[derive(Hash, Eq, PartialEq)]
struct FlatPosition {
x: i16,
y: i16,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_part_one() {
let result = part_one(&advent_of_code::template::read_file("examples", DAY));
assert_eq!(result, Some(5));
}
#[test]
fn test_part_two() {
let result = part_two(&advent_of_code::template::read_file("examples", DAY));
assert_eq!(result, Some(7));
}
}