-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathcrass.py
221 lines (175 loc) · 6.88 KB
/
crass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import random
from collections import Counter
from pathlib import Path
from typing import List
from fire import Fire
from pydantic import BaseModel
from torchvision.datasets.utils import download_url
from tqdm import tqdm
from modeling import select_model, EvalModel
class CrassSample(BaseModel):
premise: str
question: str
options: List[str]
answer: str
def as_prompt(self, include_answer=True):
prompt = self.premise.strip() + " " + self.question.strip()
labels = list("ABCD")
for i, o in enumerate(self.options):
prompt += f"\n{labels[i]}. {o}"
prompt += "\nAnswer:"
if include_answer:
prompt = f"{prompt} {self.get_answer_label()}\n\n"
return prompt
def get_answer_label(self) -> str:
labels = list("ABCD")
return labels[self.options.index(self.answer)]
class CrassData(BaseModel):
samples: List[CrassSample]
@classmethod
def load_train_set(cls):
# From few-shot samples in paper: https://aclanthology.org/2022.lrec-1.229/
samples = [
CrassSample(
premise="A feather falls from a skyscraper.",
question="What would have happened if a computer had fallen from the skyscraper?",
options=[
"The computer would have remained intact.",
"That is not possible.",
"The computer would have been crushed.",
],
answer="The computer would have been crushed.",
),
CrassSample(
premise="A lightning hits a tree.",
question="What would have happened if a marble would have hit the tree?",
options=[
"It would have burned down.",
"Nothing special would have happened.",
"The tree would have kissed the lightning.",
],
answer="Nothing special would have happened.",
),
CrassSample(
premise="A man drinks a beer.",
question="What would have happened if the man had drunk a rainbow?",
options=[
"It would have been tasty.",
"It would have been awful.",
"That is not possible.",
],
answer="That is not possible.",
),
]
return cls(samples=samples)
@classmethod
def load_test_set(
cls,
path: str = "https://raw.githubusercontent.com/apergo-ai/CRASS-data-set/main/CRASS_FTM_main_data_set.csv",
seed: int = 0,
):
if not Path(Path(path).name).exists():
download_url(path, root=".")
samples = []
random.seed(seed)
with open(Path(path).name) as f:
f.readline()
for line in f:
_, _, premise, question, *options = line.strip().split(";")
options = [o.strip() for o in options[:4] if o.strip()]
answer = options[0]
random.shuffle(options)
samples.append(
CrassSample(
premise=premise,
question=question,
options=options,
answer=answer,
)
)
return cls(samples=samples)
def analyze(self):
random.seed(0)
for sample in random.sample(self.samples, k=3):
print(sample.json(indent=2))
for sample in self.samples:
assert sample.answer in sample.options
info = dict(
samples=len(self.samples),
num_options=Counter(len(s.options) for s in self.samples),
labels=Counter(s.get_answer_label() for s in self.samples),
)
print(info)
def test_data():
data = CrassData.load_train_set()
data.analyze()
data = CrassData.load_test_set()
data.analyze()
def gen_prompt(data: CrassData, k=-1):
prompt = ""
if k == -1:
k = len(data.samples)
for sample in data.samples[:k]:
prompt += sample.as_prompt()
return prompt
def evaluate(model: EvalModel, data_train: CrassData, data_test: CrassData) -> dict:
is_correct = []
score = 0
progress = tqdm(data_test.samples)
sample: CrassSample
for sample in progress:
# get prompt and make sure it fits
k = int(len(data_train.samples))
prompt_end = sample.as_prompt(include_answer=False)
train_prompt = gen_prompt(data_train, k)
prompt = train_prompt + prompt_end
while not model.check_valid_length(prompt) and k > 0:
k -= 1
train_prompt = gen_prompt(data_train, k)
prompt = train_prompt + prompt_end
label = sample.get_answer_label()
pred = model.run(prompt).strip()
is_correct.append(pred.startswith(label))
score = sum(is_correct) / len(is_correct)
progress.set_postfix(score=score)
print(dict(prompt=prompt, label=label, pred=pred))
return dict(score=score)
def main(ntrain: int = 3, **kwargs):
model = select_model(max_input_length=2048, max_output_length=8, **kwargs)
print(locals())
all_results = []
data_train = CrassData.load_train_set()
data_train.samples = data_train.samples[:ntrain]
data_test = CrassData.load_test_set()
data_test.analyze()
result = evaluate(model, data_train, data_test)
print(result)
return result["score"]
"""
python main.py crass --model_name seq_to_seq --model_path bigscience/T0pp --load_8bit
{'crass': 58.03}
python main.py crass --model_name seq_to_seq --model_path google/flan-t5-xl
{'crass': 91.24}
python main.py crass --model_name seq_to_seq --model_path declare-lab/flan-alpaca-xxl --load_8bit
{'crass': 90.15}
python main.py crass --model_name llama --model_path TheBloke/stable-vicuna-13B-HF --load_8bit
{'crass': 67.52}
python main.py crass --model_name causal --model_path mosaicml/mpt-7b
{'crass': 39.42}
python main.py crass --model_name causal --model_path mosaicml/mpt-7b-instruct
{'crass': 38.32}
python main.py crass --model_name causal --model_path mosaicml/mpt-7b-chat
{'crass': 47.45}
python main.py crass --model_name llama --model_path huggyllama/llama-30b --load_8bit
{'crass': 68.61}
python main.py crass --model_name llama --model_path chavinlo/alpaca-native
{'crass': 50.73}
python main.py crass --model_name rwkv --model_path https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-7B-v11-Eng99%25-Other1%25-20230427-ctx8192.pth
{'crass': 28.47}
python main.py crass --model_name rwkv --model_path https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-14B-v11x-Eng99%25-Other1%25-20230501-ctx8192.pth
{'crass': 31.75}
python main.py crass --model_name openai --model_path VisualQuestionAnswering --use_azure
{'crass': 90.51}
"""
if __name__ == "__main__":
Fire()