-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboston_housing.py
43 lines (36 loc) · 1.44 KB
/
boston_housing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from keras.datasets import boston_housing
from keras import models
from keras import layers
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
print(mean)
print(std)
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print('processing fold #', i)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
partial_train_data = np.concatenate([train_data[:i * num_val_samples],train_data[(i + 1) * num_val_samples:]],axis=0)
partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],train_targets[(i + 1) * num_val_samples:]],axis=0)
model = build_model()
model.fit(partial_train_data, partial_train_targets,epochs=num_epochs, batch_size=1, verbose=0)
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
all_scores.append(val_mae)
print(all_scores)
print(np.mean(all_scores))