-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_loader.py
31 lines (27 loc) · 1022 Bytes
/
mnist_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gzip
import pickle
#import cPickle
import _pickle as cPickle
import numpy as np
def load_data():
f = gzip.open('data/mnist.pkl.gz', 'rb')
#training_data, validation_data, test_data = cPickle.load(f)
u = pickle._Unpickler(f)
u.encoding = 'latin1'
training_data, validation_data, test_data = u.load()
f.close()
return (training_data, validation_data, test_data)
def load_data_wrapper():
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = list(zip(training_inputs, training_results))
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
validation_data = list(zip(validation_inputs, va_d[1]))
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
test_data = list(zip(test_inputs, te_d[1]))
return (training_data, validation_data, test_data)
def vectorized_result(j):
e = np.zeros((10, 1))
e[j] = 1.0
return e