-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss_function.py
60 lines (44 loc) · 1.95 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch
import torch.nn as nn
import torch.nn.functional as F
class QuadrupletLoss:
def __init__(self, margin_a=1, margin_b=0.5, p=2):
self.margin_a = margin_a
self.margin_b = margin_b
self.p = p
def __call__(self, output_a, output_p, output_n1, output_n2):
distance_1 = (output_a - output_p) ** 2 - \
(output_a - output_n1) ** 2 + self.margin_a
distance_1 = max(distance_1, 0)
distance_2 = (output_a - output_p) ** 2 - \
(output_n1 - output_n2) ** 2 + self.margin_b
distance_2 = max(distance_2, 0)
total_distance = distance_1 + distance_2
return total_distance
class CosineLoss:
def __init__(self, margin_a=1, margin_b=0.5, p=2):
self.margin_a = margin_a
self.margin_b = margin_b
self.cosine = nn.CosineSimilarity(dim=1, eps=1e-6)
def __call__(self, output_a, output_p, output_n1):
distance_1 = self.cosine(output_a, output_p) - \
self.cosine(output_a, output_n1) + self.margin_a
distance_1 = max(torch.mean(distance_1), 0)
total_distance = distance_1
return total_distance
class TripletLoss(nn.Module):
def __init__(self, margin = 1.0):
super(TripletLoss, self).__init__()
self.margin = margin
self.cosine = nn.CosineSimilarity(dim=1, eps=1e-6)
def calc_euclidean(self, x1, x2):
return(x1 - x2).pow(2).sum(1)
def calc_cosine(self,x1,x2):
return self.cosine(x1,x2)
def forward(self, anchor: torch.Tensor, positive: torch.Tensor, negative: torch.Tensor) -> torch.Tensor:
distance_positive = self.calc_euclidean(anchor, positive)
distance_negative_a = self.calc_euclidean(anchor, negative)
distance_negative_b = self.calc_euclidean(positive, negative)
losses = torch.relu(distance_positive - (distance_negative_a + distance_negative_b)/2.0 + self.margin)
return losses.mean()