-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
209 lines (171 loc) · 7.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import transformers
import torch
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from transformers import AutoModel, AutoTokenizer, AdamW, get_linear_schedule_with_warmup
from transformers import DistilBertTokenizer, DistilBertModel
from pylab import rcParams
from matplotlib import rc
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from textwrap import wrap
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from dataloader import create_data_loader, create_triplet_data_loader , get_data_df
from config import get_config
from loss_function import CosineLoss, QuadrupletLoss, TripletLoss
from model import get_model
def train_epoch(model_anchor, model_pos_neg, data_loader, loss_fn, optimizer_a, optimizer_pn, device, config, textwriter):
model_anchor.train()
model_pos_neg.train()
losses = []
for step, batch in enumerate(data_loader):
# Anchor
anchor_ids = batch["anchor_ids"].to(device)
anchor_attention_mask = batch["anchor_attention_mask"].to(device)
anchor_outputs = model_anchor(
input_ids=anchor_ids,
attention_mask=anchor_attention_mask
)
# Positive
positive_ids = batch["positive_ids"].to(device)
positive_attention_mask = batch["positive_attention_mask"].to(device)
positive_outputs = model_pos_neg(
input_ids=positive_ids,
attention_mask=positive_attention_mask
)
# Negative
negative_ids = batch["negative_ids"].to(device)
negative_attention_mask = batch["negative_attention_mask"].to(device)
negative_outputs = model_pos_neg(
input_ids=negative_ids,
attention_mask=negative_attention_mask
)
loss = loss_fn(anchor_outputs, positive_outputs, negative_outputs)
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model_anchor.parameters(), max_norm=config.clip)
nn.utils.clip_grad_norm_(model_pos_neg.parameters(), max_norm=config.clip)
optimizer_a.step()
optimizer_pn.step()
# scheduler.step()
optimizer_a.zero_grad()
optimizer_pn.zero_grad()
if step % config.print_every == 0:
print(f"[Train] Loss at step {step} = {loss}")
textwriter.write(f"Loss at step {step} = {loss} \n")
return np.mean(losses)
def eval_model(model_anchor, model_pos_neg, data_loader, loss_fn, device, n_examples, config):
model_anchor.eval()
model_pos_neg.eval()
correct_predictions = 0
distances = []
with torch.no_grad():
for batch in data_loader:
question1_ids = batch["question1_ids"].to(device)
question1_attention_mask = batch["question1_attention_mask"].to(
device)
question2_ids = batch["question2_ids"].to(device)
question2_attention_mask = batch["question2_attention_mask"].to(
device)
targets = batch["targets"].to(device)
question1_outputs = model_anchor(
input_ids=question1_ids,
attention_mask=question1_attention_mask
)
question2_outputs = model_pos_neg(
input_ids=question2_ids,
attention_mask=question2_attention_mask
)
distance = (question1_outputs - question2_outputs).pow(2).sum(1)
distance = torch.mean(distance)
distances.append(distance.item())
distance = torch.sum((distance < config.val_threshold).long())
return distance.item() / n_examples, sum(distances) / len(distances)
if __name__ == '__main__':
config = get_config()
np.random.seed(config.seed)
torch.manual_seed(config.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Data Loader
df_train , df_test = get_data_df(config.train_dir, config.val_dir,config)
tokenizer = AutoTokenizer.from_pretrained(config.PRE_TRAINED_MODEL_NAME)
train_data_loader = create_triplet_data_loader(
df_train, tokenizer, config.max_len, config.batch_size, mode='train')
test_data_loader = create_data_loader(
df_test, tokenizer, config.max_len, config.batch_size, mode='val')
# model
model_anchor = get_model(config)
model_pos_neg = get_model(config)
model_anchor = model_anchor.to(device)
model_pos_neg = model_pos_neg.to(device)
if config.optim == 'adam':
optimizer_a = torch.optim.Adam(model_anchor.parameters(), lr=config.lr)
optimizer_pn = torch.optim.Adam(model_pos_neg.parameters(), lr=config.lr)
elif config.optim == 'amsgrad':
optimizer_a = torch.optim.Amsgrad(model_anchor.parameters(), lr=config.lr)
optimizer_pn = torch.optim.Amsgrad(model_pos_neg.parameters(), lr=config.lr)
elif config.optim == 'adagrad':
optimizer_a = torch.optim.Adagrad(model_anchor.parameters(), lr=config.lr)
optimizer_pn = torch.optim.Adagrad(model_pos_neg.parameters(), lr=config.lr)
elif config.optim == 'adamw':
optimizer_a = AdamW(model_anchor.parameters(), lr=config.lr, correct_bias=True)
optimizer_pn = AdamW(model_pos_neg.parameters(), lr=config.lr, correct_bias=True)
total_steps = len(train_data_loader) * config.epochs
# scheduler = get_linear_schedule_with_warmup(
# optimizer,
# num_warmup_steps=0,
# num_training_steps=total_steps
# )
if config.loss_fn == 'triplet':
loss_fn = nn.TripletMarginLoss(margin=1.0, p=2)
elif config.loss_fn == 'cosine' :
loss_fn = CosineLoss()
elif config.loss_fn == 'custom_triplet':
loss_fn = TripletLoss()
history = {
'train_acc' : [],
'train_loss' : [],
'val_acc' : [],
'val_loss' : [],
}
best_loss = 99999999
config.textfile = open(config.log_dir, "w")
for epoch in range(config.epochs):
print(f'Epoch {epoch + 1}/{config.epochs}')
print('-' * 10)
config.textfile.write(f"########## Epoch {epoch} ##########")
train_loss = train_epoch(
model_anchor,
model_pos_neg,
train_data_loader,
loss_fn,
optimizer_a,
optimizer_pn,
device,
config,
config.textfile
)
print(f'Train loss {train_loss}')
val_acc, val_loss = eval_model(
model_anchor,
model_pos_neg,
test_data_loader,
loss_fn,
device,
len(df_test),
config
)
print(f'Val mean distance {val_loss} accuracy {val_acc}')
print()
history['train_loss'].append(train_loss)
history['val_acc'].append(val_acc)
history['val_loss'].append(val_loss)
if val_loss < best_loss:
print('[SAVE] Saving model ... ')
torch.save(model_anchor.state_dict(), config.model_path)
torch.save(model_pos_neg.state_dict(), config.model_path + '_pos_neg')
best_loss = val_loss