-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_single.py
284 lines (231 loc) · 9.2 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import transformers
import torch
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from transformers import AutoModel, AutoTokenizer, AdamW, get_linear_schedule_with_warmup
from transformers import DistilBertTokenizer, DistilBertModel
from pylab import rcParams
from matplotlib import rc
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from textwrap import wrap
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from dataloader import create_data_loader, create_triplet_data_loader , get_data_df
from config import get_config
from loss_function import CosineLoss, QuadrupletLoss, TripletLoss
from model import get_model
from evaluate_single import evaluate_model
def train_epoch_aux(model, data_loader, loss_fn, loss_cosine, optimizer , device, config, textwriter):
model.train()
losses = []
loss_func = torch.nn.MarginRankingLoss(0.0)
for step, batch in enumerate(data_loader):
# Anchor
anchor_ids = batch["anchor_ids"].to(device)
anchor_attention_mask = batch["anchor_attention_mask"].to(device)
B, max_len = anchor_ids.size()
anchor_outputs = model(
input_ids=anchor_ids,
attention_mask=anchor_attention_mask
)
# Positive
positive_ids = batch["positive_ids"].to(device)
positive_attention_mask = batch["positive_attention_mask"].to(device)
positive_outputs = model(
input_ids=positive_ids,
attention_mask=positive_attention_mask
)
# Negative
negative_ids = batch["negative_ids"].to(device)
negative_attention_mask = batch["negative_attention_mask"].to(device)
negative_outputs = model(
input_ids=negative_ids,
attention_mask=negative_attention_mask
)
# Triplet Loss
loss = loss_fn(anchor_outputs, positive_outputs, negative_outputs)
# Auxilarity Loss
ones = torch.ones(B,device = anchor_outputs.device)
loss_aux1 = loss_func(positive_outputs,negative_outputs,torch.ones((B,config.embed_dim),device = anchor_outputs.device))
loss_aux2 = loss_cosine(positive_outputs,negative_outputs,ones*-1)
loss = loss + loss_aux1 + loss_aux2
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=config.clip)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step % config.print_every == 0:
print(f"[Train] Loss at step {step} = {loss}, aux1 = {loss_aux1}, aux2 = {loss_aux2}")
textwriter.write(f"Loss at step {step} = {loss} \n")
return np.mean(losses)
def train_epoch(model, data_loader, loss_fn, optimizer , device, config, textwriter):
model.train()
losses = []
for step, batch in enumerate(data_loader):
# Anchor
anchor_ids = batch["anchor_ids"].to(device)
anchor_attention_mask = batch["anchor_attention_mask"].to(device)
B, max_len = anchor_ids.size()
anchor_outputs = model(
input_ids=anchor_ids,
attention_mask=anchor_attention_mask
)
# Positive
positive_ids = batch["positive_ids"].to(device)
positive_attention_mask = batch["positive_attention_mask"].to(device)
positive_outputs = model(
input_ids=positive_ids,
attention_mask=positive_attention_mask
)
# Negative
negative_ids = batch["negative_ids"].to(device)
negative_attention_mask = batch["negative_attention_mask"].to(device)
negative_outputs = model(
input_ids=negative_ids,
attention_mask=negative_attention_mask
)
loss = loss_fn(anchor_outputs, positive_outputs, negative_outputs)
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=config.clip)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step % config.print_every == 0:
print(f"[Train] Loss at step {step} = {loss}")
textwriter.write(f"Loss at step {step} = {loss} \n")
return np.mean(losses)
def eval_model(model , data_loader, loss_fn, device, n_examples, config):
model.eval()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
correct_predictions = 0
distances = []
with torch.no_grad():
for batch in data_loader:
question1_ids = batch["question1_ids"].to(device)
question1_attention_mask = batch["question1_attention_mask"].to(
device)
question2_ids = batch["question2_ids"].to(device)
question2_attention_mask = batch["question2_attention_mask"].to(
device)
targets = batch["targets"].to(device)
question1_outputs = model(
input_ids=question1_ids,
attention_mask=question1_attention_mask
)
question2_outputs = model(
input_ids=question2_ids,
attention_mask=question2_attention_mask
)
distance = cos(question1_outputs,question2_outputs)
distance = torch.mean(distance)
distances.append(distance.item())
distance = torch.sum((distance < config.val_threshold).long())
return distance.item() / n_examples, sum(distances) / len(distances)
if __name__ == '__main__':
config = get_config()
np.random.seed(config.seed)
torch.manual_seed(config.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Data Loader
df_train , df_test = get_data_df(config.train_dir, config.val_dir,config)
tokenizer = AutoTokenizer.from_pretrained(config.PRE_TRAINED_MODEL_NAME)
train_data_loader = create_triplet_data_loader(
df_train, tokenizer, config.max_len, config.batch_size, mode='train')
test_data_loader = create_data_loader(
df_test, tokenizer, config.max_len, config.batch_size, mode='val')
# model
model = get_model(config)
model = model.to(device)
if config.optim == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
elif config.optim == 'amsgrad':
optimizer = torch.optim.Amsgrad(model.parameters(), lr=config.lr)
elif config.optim == 'adagrad':
optimizer = torch.optim.Adagrad(model.parameters(), lr=config.lr)
elif config.optim == 'adamw':
optimizer = AdamW(model.parameters(), lr=config.lr, correct_bias=True)
total_steps = len(train_data_loader) * config.epochs
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=10000,
num_training_steps=total_steps
)
if config.loss_fn == 'triplet':
loss_fn = nn.TripletMarginLoss(margin=1.0, p=2)
elif config.loss_fn == 'cosine' :
loss_fn = CosineLoss()
elif config.loss_fn == 'custom_triplet':
loss_fn = TripletLoss()
if config.use_aux:
loss_cosine = torch.nn.CosineEmbeddingLoss()
history = {
'train_acc' : [],
'train_loss' : [],
'val_acc' : [],
'val_loss' : [],
}
best_loss = 99999999
best_top1 = 0
best_top5 = 0
best_total = 0
best_epoch = -1
config.textfile = open(config.log_dir, "w")
for epoch in range(config.epochs):
print(f'Epoch {epoch + 1}/{config.epochs}')
print('-' * 10)
config.textfile.write(f"########## Epoch {epoch} ##########")
if config.use_aux:
train_loss = train_epoch_aux(
model,
train_data_loader,
loss_fn,
loss_cosine,
optimizer,
device,
config,
config.textfile
)
else:
train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
config,
config.textfile
)
print(f'Train loss {train_loss}')
# val_acc, val_loss = eval_model(
# model,
# test_data_loader,
# loss_fn,
# device,
# len(df_test),
# config
# )
top1,top3,top5 = evaluate_model(model,tokenizer,config)
print(f'Top-1 = {top1} , Top-3 = {top3}, Top-5 = {top5}')
print()
history['train_loss'].append(train_loss)
history['val_acc'].append(top1)
if top1 + top3 + top5 > best_total:
print('[SAVE] Saving model ... ')
torch.save(model.state_dict(), config.model_path)
best_top1 = top1
best_top5 = top5
best_total = top1 + top3 + top5
best_epoch = epoch
elif top1 + top3 + top5 == best_top1 and top1 > best_top1:
print('[SAVE] Saving model ... ')
torch.save(model.state_dict(), config.model_path)
best_top1 = top1
best_total = top1 + top3 + top5
best_epoch = epoch
print(f'Best epoch {best_epoch} , Top-1 = {best_top1}')