-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrender.py
372 lines (323 loc) · 20.6 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from torch import nn
from scene import Scene, SpecularModel
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from utils.pose_utils import pose_spherical, render_wander_path
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from scene import iResNet
import imageio
import numpy as np
import cv2
import visdom
from easydict import EasyDict
from utils.util import check_socket_open
from utils.util_vis import vis_cameras
from random import randint
from utils.loss_utils import l1_loss, ssim, kl_divergence, l2_loss
import matplotlib.pyplot as plt
from utils.camera import Lie
from scipy.spatial.transform import Rotation as R
from scipy.spatial.transform import Slerp
opt_vis = EasyDict({'group': 'exp_synthetic', 'name': 'l2g_lego', 'model': 'l2g_nerf', 'yaml': 'l2g_nerf_blender', 'seed': 0, 'gpu': 0, 'cpu': False, 'load': None, 'arch': {'layers_feat': [None, 256, 256, 256, 256, 256, 256, 256, 256], 'layers_rgb': [None, 128, 3], 'skip': [4], 'posenc': {'L_3D': 10, 'L_view': 4}, 'density_activ': 'softplus', 'tf_init': True, 'layers_warp': [None, 256, 256, 256, 256, 256, 256, 6], 'skip_warp': [4], 'embedding_dim': 128}, 'data': {'root': '/the/data/path/of/nerf_synthetic/', 'dataset': 'blender', 'image_size': [400, 400], 'num_workers': 4, 'preload': True, 'augment': {}, 'center_crop': None, 'val_on_test': False, 'train_sub': None, 'val_sub': 4, 'scene': 'lego', 'bgcolor': 1}, 'loss_weight': {'render': 0, 'render_fine': None, 'global_alignment': 2}, 'optim': {'lr': 0.0005, 'lr_end': 0.0001, 'algo': 'Adam', 'sched': {'type': 'ExponentialLR', 'gamma': None}, 'lr_pose': 0.001, 'lr_pose_end': 1e-08, 'sched_pose': {'type': 'ExponentialLR', 'gamma': None}, 'warmup_pose': None, 'test_photo': True, 'test_iter': 100}, 'batch_size': None, 'max_epoch': None, 'resume': False, 'output_root': 'output', 'tb': {'num_images': [4, 8]}, 'visdom': {'server': 'localhost', 'port': 8600, 'cam_depth': 0.5}, 'freq': {'scalar': 200, 'vis': 1000, 'val': 2000, 'ckpt': 5000}, 'nerf': {'view_dep': True, 'depth': {'param': 'metric', 'range': [2, 6]}, 'sample_intvs': 128, 'sample_stratified': True, 'fine_sampling': False, 'sample_intvs_fine': None, 'rand_rays': 1024, 'density_noise_reg': None, 'setbg_opaque': False}, 'camera': {'model': 'perspective', 'ndc': False, 'noise': True, 'noise_r': 0.07, 'noise_t': 0.5}, 'max_iter': 200000, 'trimesh': {'res': 128, 'range': [-1.2, 1.2], 'thres': 25.0, 'chunk_size': 16384}, 'barf_c2f': [0.1, 0.5], 'error_map_size': None, 'output_path': 'output/exp_synthetic/l2g_lego', 'device': 'cuda:0', 'H': 400, 'W': 400})
is_open = check_socket_open(opt_vis.visdom.server,opt_vis.visdom.port)
vis = visdom.Visdom(server=opt_vis.visdom.server,port=opt_vis.visdom.port,env=opt_vis.group)
def homogenize(X: torch.Tensor):
assert X.ndim == 2
assert X.shape[1] in (2, 3)
return torch.cat(
(X, torch.ones((X.shape[0], 1), dtype=X.dtype, device=X.device)), dim=1
)
def dehomogenize(X: torch.Tensor):
assert X.ndim == 2
assert X.shape[1] in (3, 4)
return X[:, :-1] / X[:, -1:]
def render_set(model_path, name, iteration, views, gaussians, pipeline, background, specular=None, hybrid=False, distortion_params=None, u_distortion=None, v_distortion=None, u_radial=None, v_radial=None, affine_coeff=None, poly_coeff=None, extend_scale=None):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
depth_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depth")
mask_path = os.path.join(model_path, name, "ours_{}".format(iteration), "mask")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
makedirs(depth_path, exist_ok=True)
makedirs(mask_path, exist_ok=True)
if os.path.exists(os.path.join(model_path, 'distortion_params.pt')):
distortion_params = torch.load(os.path.join(model_path, 'distortion_params.pt'))
u_distortion = torch.load(os.path.join(model_path, f'u_distortion{iteration}.pt'))
v_distortion = torch.load(os.path.join(model_path, f'v_distortion{iteration}.pt'))
u_radial = torch.load(os.path.join(model_path, f'u_radial{iteration}.pt'))
v_radial = torch.load(os.path.join(model_path, f'v_radial{iteration}.pt'))
affine_coeff = torch.load(os.path.join(model_path, f'affine_coeff{iteration}.pt'))
poly_coeff = torch.load(os.path.join(model_path, f'poly_coeff{iteration}.pt'))
radial = torch.load(os.path.join(model_path, f'radial{iteration}.pt'))
lens_net = torch.load(os.path.join(model_path, f'lens_net{iteration}.pth'))
if os.path.exists(os.path.join(model_path, f'ref_points_{iteration}.pt')):
ref_points = torch.load(os.path.join(model_path, f'ref_points_{iteration}.pt'))
else:
distortion_params = torch.nn.Parameter(torch.zeros(8).cuda())
u_distortion = nn.Parameter(torch.zeros(400, 400).cuda().requires_grad_(True))
v_distortion = nn.Parameter(torch.zeros(400, 400).cuda().requires_grad_(True))
u_radial = nn.Parameter(torch.ones(400, 400).cuda().requires_grad_(True))
v_radial = nn.Parameter(torch.ones(400, 400).cuda().requires_grad_(True))
affine_coeff = nn.Parameter(torch.tensor([1., 0., 0., 1., 0., 0.]).cuda().requires_grad_(True))
#poly_coeff = nn.Parameter(torch.tensor([0.017343506884212139, -0.020094679982101907, -0.019892937295193619, 0.0085534590404976324]).cuda().requires_grad_(True))
poly_coeff = nn.Parameter(torch.tensor([0., 0., 0., 0.]).cuda().requires_grad_(True))
#print(views[0].intrinsic_matrix)
#views[0].reset_intrinsic(0.725839191500477 + 0.0, 0.4940489874075565 + 0.0, scale_pix=5.)
#print(views[0].intrinsic_matrix)
width = views[0].image_width
height = views[0].image_height
sample_width = int(width / 8)
sample_height = int(height / 8)
K = views[0].get_K
i, j = np.meshgrid(
np.linspace(0 - width/extend_scale, width + width/extend_scale, sample_width),
np.linspace(0 - height/extend_scale, height + height/extend_scale, sample_height),
indexing="ij",
)
i = i.T
j = j.T
P_sensor = (
torch.from_numpy(np.stack((i, j), axis=-1))
.to(torch.float32)
.cuda()
)
P_sensor_hom = homogenize(P_sensor.reshape((-1, 2)))
P_view_insidelens_direction_hom = (torch.inverse(K) @ P_sensor_hom.T).T
P_view_insidelens_direction = dehomogenize(P_view_insidelens_direction_hom)
P_view_outsidelens_direction = lens_net.forward(P_view_insidelens_direction)
control_points = homogenize(P_view_outsidelens_direction)
control_points = control_points.reshape((P_sensor.shape[0], P_sensor.shape[1], 3))[:, :, :2]
boundary_original_points = P_view_insidelens_direction[-1]
if os.path.exists(os.path.join(model_path, f'ref_points_{iteration}.pt')):
control_points = ref_points # vanillar gs, grid gs, and ref gs
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
gt = view.original_image[0:3, :, :]
mask = gt[:1, :, :].bool()
#if idx > 0:
# view.reset_intrinsic(0.725839191500477 + 0.0, 0.4940489874075565 + 0.0, scale_pix=5.)
if hybrid:
dir_pp = (gaussians.get_xyz - view.camera_center.repeat(gaussians.get_features.shape[0], 1))
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
mlp_color = specular.step(gaussians.get_asg_features, dir_pp_normalized)
results = render(view, gaussians, pipeline, background, mlp_color)
rendering = results["render"]
#depth = results["depth"]
#depth = depth / (depth.max() + 1e-5)
else:
mlp_color = 0
global_alignment = [torch.tensor([[1., 0, 0], [0, 1., 0], [0, 0, 1.]], device='cuda'), torch.tensor([1.], device='cuda')]
# render current view
gaussians_xyz = gaussians.get_xyz.detach()
gaussians_xyz_homo = torch.cat((gaussians_xyz, torch.ones(gaussians_xyz.size(0), 1).cuda()), dim=1)
#gaussians_xyz_homo.retain_grad()
# glm use the transpose of w2c
w2c = view.get_world_view_transform().t().detach()
p_w2c = (w2c @ gaussians_xyz_homo.T).T.cuda().detach()
intrinsic = view.get_intrinsic().t().detach()
proj_mat = view.get_full_proj_transform().t().detach()
p_proj = (proj_mat @ gaussians_xyz_homo.T).T.cuda().detach()
p_2d = p_proj[:, :2] / p_proj[:, -1:]
#if opt_distortion and iteration > 3000:
if False:
undistorted_p_w2c = lens_net.forward(p_w2c[:, :3])
undistorted_p_w2c_homo = torch.cat((undistorted_p_w2c, torch.ones(undistorted_p_w2c.size(0), 1).cuda()), dim=1)
else:
undistorted_p_w2c_homo = p_w2c
results = render(view, gaussians, pipeline, background, mlp_color, control_points, boundary_original_points, undistorted_p_w2c_homo, distortion_params, u_distortion, v_distortion, u_radial, v_radial, affine_coeff, poly_coeff, radial, global_alignment=global_alignment)
rendering, depth_tensor, weight_mask = results["render"], results["depth"], results["weights"]
#depth_tensor_normalized = (depth_tensor - depth_tensor[mask].min()) / (depth_tensor[mask].max() - depth_tensor[mask].min())
#depth_tensor_grey = depth_tensor_normalized.repeat(3, 1, 1)
#depth_array = depth_tensor_normalized.squeeze().cpu().detach().numpy()
#depth_colored = plt.get_cmap('viridis')(depth_array)[:, :, :3] # Drop the alpha channel
#depth_colored_tensor = torch.from_numpy(depth_colored).permute(2, 0, 1).float() # Rearrange dimensions to CxHxW
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
#torchvision.utils.save_image(depth_colored_tensor, os.path.join(depth_path, '{0:05d}'.format(idx) + ".png"))
#torchvision.utils.save_image(depth_colored_tensor, os.path.join(depth_path, '{0:05d}'.format(idx) + ".png"))
#torchvision.utils.save_image(depth_tensor_grey, os.path.join(depth_path, 'grey_{0:05d}'.format(idx) + ".png"))
#torchvision.utils.save_image(weight_mask, os.path.join(mask_path, 'mask_{0:05d}'.format(idx) + ".png"))
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, mode: str, hybrid: bool, opt_test_cam: bool, opt_intrinsic: bool, opt_extrinsic: bool, extend_scale: float):
gaussians = GaussianModel(dataset.sh_degree, dataset.asg_degree)
lens_net = iResNet()
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
distortion_params = torch.nn.Parameter(torch.zeros(8).cuda())
u_distortion = nn.Parameter(torch.zeros(400, 400).cuda().requires_grad_(True))
v_distortion = nn.Parameter(torch.zeros(400, 400).cuda().requires_grad_(True))
u_radial = nn.Parameter(torch.ones(400, 400).cuda().requires_grad_(True))
v_radial = nn.Parameter(torch.ones(400, 400).cuda().requires_grad_(True))
optimizer_u_distortion = torch.optim.Adam([{'params': u_distortion, 'lr': 0.0001}])
optimizer_v_distortion = torch.optim.Adam([{'params': v_distortion, 'lr': 0.0001}])
optimizer_u_radial = torch.optim.Adam([{'params': u_radial, 'lr': 0.0001}])
optimizer_v_radial = torch.optim.Adam([{'params': v_radial, 'lr': 0.0001}])
affine_coeff = nn.Parameter(torch.tensor([1., 0., 0., 1., 0., 0.]).cuda().requires_grad_(True))
poly_coeff = nn.Parameter(torch.tensor([0., 0., 0., 0.]).cuda().requires_grad_(True))
# when we optimize pose, we wish to load poses
scene.train_cameras = torch.load(os.path.join(scene.model_path, f'cams_train{iteration}.pt'))
specular = None
if hybrid:
specular = SpecularModel()
specular.load_weights(dataset.model_path)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
render_func = render_set
#scene.loadAlignCameras(if_vis_test=True, path=scene.model_path)
viewpoint_stack = scene.getTestCameras().copy()
if opt_test_cam:
if os.path.exists(os.path.join(scene.model_path, 'opt_test_cam.pt')):
scene.test_cameras = torch.load(os.path.join(scene.model_path, 'opt_test_cam.pt'))
progress_bar = tqdm(range(0, 7000), desc="Training progress")
for iteration in range(7000):
if iteration % 1000 == 0:
pose_gt, pose_aligned = scene.visTestCameras()
vis_cameras(opt_vis, vis, iteration, poses=[pose_aligned, pose_gt])
if not viewpoint_stack:
viewpoint_stack = scene.getTestCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
mlp_color = 0
global_alignment = [torch.tensor([[1., 0, 0], [0, 1., 0], [0, 0, 1.]], device='cuda'), torch.tensor([1.], device='cuda')]
gaussians_xyz = gaussians.get_xyz.detach()
gaussians_xyz_homo = torch.cat((gaussians_xyz, torch.ones(gaussians_xyz.size(0), 1).cuda()), dim=1)
#gaussians_xyz_homo.retain_grad()
# glm use the transpose of w2c
w2c = viewpoint_cam.get_world_view_transform().t().detach()
p_w2c = (w2c @ gaussians_xyz_homo.T).T.cuda().detach()
intrinsic = viewpoint_cam.get_intrinsic().t().detach()
proj_mat = viewpoint_cam.get_full_proj_transform().t().detach()
p_proj = (proj_mat @ gaussians_xyz_homo.T).T.cuda().detach()
p_2d = p_proj[:, :2] / p_proj[:, -1:]
#if opt_distortion and iteration > 3000:
if False:
undistorted_p_w2c = lens_net.forward(p_w2c[:, :3])
undistorted_p_w2c_homo = torch.cat((undistorted_p_w2c, torch.ones(undistorted_p_w2c.size(0), 1).cuda()), dim=1)
else:
undistorted_p_w2c_homo = p_w2c
render_pkg = render(viewpoint_cam, gaussians, pipeline, background, mlp_color, undistorted_p_w2c_homo, distortion_params, u_distortion, v_distortion, u_radial, v_radial, affine_coeff, poly_coeff, global_alignment=global_alignment)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
ssim_loss = ssim(image, gt_image)
loss = 0.8 * Ll1 + 0.2 * (1.0 - ssim_loss)
loss.backward(retain_graph=True)
with torch.no_grad():
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{loss.item():.{7}f}"})
progress_bar.update(10)
if iteration == 50000:
progress_bar.close()
if opt_extrinsic:
scene.optimizer_rotation_test.step()
scene.optimizer_translation_test.step()
scene.optimizer_rotation_test.zero_grad(set_to_none=True)
scene.optimizer_translation_test.zero_grad(set_to_none=True)
scene.scheduler_rotation_test.step()
scene.scheduler_translation_test.step()
if opt_intrinsic:
optimizer_u_distortion.step()
optimizer_v_distortion.step()
optimizer_u_distortion.zero_grad(set_to_none=True)
optimizer_v_distortion.zero_grad(set_to_none=True)
optimizer_u_radial.step()
optimizer_v_radial.step()
optimizer_u_radial.zero_grad(set_to_none=True)
optimizer_v_radial.zero_grad(set_to_none=True)
scene.optimizer_fovx.step()
scene.optimizer_fovy.step()
scene.optimizer_fovx.zero_grad(set_to_none=True)
scene.optimizer_fovy.zero_grad(set_to_none=True)
torch.save(scene.test_cameras, os.path.join(scene.model_path, 'opt_test_cam.pt'))
torch.save(scene.test_cameras, os.path.join(scene.model_path, 'opt_test_cam.pt'))
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background, specular, hybrid, extend_scale=extend_scale)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background, specular, hybrid, distortion_params, u_distortion, v_distortion, u_radial, v_radial, affine_coeff, poly_coeff, extend_scale=extend_scale)
def init_wandb(cfg, wandb_id=None, project="", run_name=None, mode="online", resume=False, use_group=False, set_group=None):
r"""Initialize Weights & Biases (wandb) logger.
Args:
cfg (obj): Global configuration.
wandb_id (str): A unique ID for this run, used for resuming.
project (str): The name of the project where you're sending the new run.
If the project is not specified, the run is put in an "Uncategorized" project.
run_name (str): name for each wandb run (useful for logging changes)
mode (str): online/offline/disabled
"""
print('Initialize wandb')
if not wandb_id:
wandb_path = os.path.join(cfg.model_path, "wandb_id.txt")
if resume and os.path.exists(wandb_path):
with open(wandb_path, "r") as f:
wandb_id = f.read()
else:
wandb_id = wandb.util.generate_id()
with open(wandb_path, "w+") as f:
f.write(wandb_id)
if use_group:
group, name = cfg.model_path.split("/")[-2:]
group = set_group
else:
group, name = None, os.path.basename(cfg.model_path)
group = set_group
if run_name is not None:
name = run_name
wandb.init(id=wandb_id,
project=project,
config=vars(cfg),
group=group,
name=name,
dir=cfg.model_path,
resume=resume,
settings=wandb.Settings(start_method="fork"),
mode=mode)
wandb.config.update({'dataset': cfg.source_path})
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--hybrid", action="store_true", default=False)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--mode", default='render', choices=['render', 'view', 'all', 'pose', 'original'])
parser.add_argument("--opt_test_cam", action="store_true", default=False)
# if opt camera intrinsic
parser.add_argument("--opt_intrinsic", action="store_true", default=False)
parser.add_argument("--opt_extrinsic", action="store_true", default=False)
# wandb setting
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--wandb_project_name", type=str, default = None)
parser.add_argument("--wandb_group_name", type=str, default = None)
parser.add_argument("--wandb_mode", type=str, default = "online")
parser.add_argument('--extend_scale', type=float, default=2.)
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Initialize wandb
if args.wandb:
wandb.login()
wandb_run = init_wandb(args,
project=args.wandb_project_name,
mode=args.wandb_mode,
resume=args.resume,
use_group=True,
set_group=args.wandb_group_name
)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.mode, args.hybrid, args.opt_test_cam, args.opt_intrinsic, args.opt_extrinsic, args.extend_scale)