-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
785 lines (700 loc) · 49.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import io
import sys
import torch
import torchvision
import random
import math
from random import randint
from utils.loss_utils import l1_loss, ssim, kl_divergence, l2_loss
from gaussian_renderer import render, network_gui
from scene import Scene, GaussianModel, SpecularModel, iResNet, VignettingModel
from scene.gaussian_model import build_scaling_rotation
from utils.general_utils import safe_state, get_linear_noise_func, linear_to_srgb
from tqdm import tqdm
from utils.image_utils import psnr
from utils.loss_utils import ssim
from utils.lpipsPyTorch import lpips
from utils.graphics_utils import fov2focal, focal2fov, getProjectionMatrix, cubemap_to_perspective
from utils.visualization import wandb_image
from utils.util_vis import vis_cameras, log_vector_field_to_wandb
from utils.util import check_socket_open, prepare_output_and_logger, init_wandb
from utils.camera_utils import rotate_camera
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
import wandb
import visdom
from easydict import EasyDict
from PIL import Image
import time
from io import BytesIO
from torch import nn
import torch.nn.functional as F
from utils.util_distortion import homogenize, dehomogenize, colorize, plot_points, center_crop, init_iresnet, init_cubemap, apply_distortion, generate_control_pts, read_colmap_coeff
from utils.cubemap_utils import apply_flow_up_down_left_right, generate_pts_up_down_left_right, mask_half, generate_circular_mask, render_cubemap
import copy
from scene.cameras import Camera
from scipy.ndimage import binary_erosion
import matplotlib.pyplot as plt
# set random seeds
import numpy as np
import random
seed_value = 100 # Replace this with your desired seed value
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # if you are using multi-GPU.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed_value)
random.seed(seed_value)
def has_nan_in_model(model):
"""Check if any weight or gradient in the model contains NaN."""
for name, param in model.named_parameters():
if torch.isnan(param).any():
print(f"⚠️ NaN detected in: {name} (weights)")
return True
if param.grad is not None and torch.isnan(param.grad).any():
print(f"⚠️ NaN detected in: {name} (gradients)")
return True
return False # No NaNs found
def has_nan_in_gradients(model):
"""Check if any gradient in the model contains NaN."""
for name, param in model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print(f"⚠️ NaN detected in: {name} (gradients)")
return True
return False # No NaNs found in gradients
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, use_wandb=False, random_init=False, hybrid=False, opt_cam=False, opt_shift=False, no_distortion_mask=False, opt_distortion=False, start_vignetting=10000000000, opt_intrinsic=False, r_t_noise=[0., 0.], r_t_lr=[0.001, 0.001], global_alignment_lr=0.001, extra_loss=False, start_opt_lens=1, extend_scale=2., control_point_sample_scale=8., outside_rasterizer=False, abs_grad=False, densi_num=0.0002, mask_radius=512, if_circular_mask=False, flow_scale=[1., 1.], render_resolution=1., apply2gt=False, iresnet_lr=1e-7, iresnet_opt_duration=[0, 30000], no_init_iresnet=False, opacity_threshold=0.005, mcmc=False, cubemap=False, table1=False):
if dataset.cap_max == -1 and mcmc:
print("Please specify the maximum number of Gaussians using --cap_max.")
exit()
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree, dataset.asg_degree)
scene = Scene(dataset, gaussians, random_init=random_init, r_t_noise=r_t_noise, r_t_lr=r_t_lr, global_alignment_lr=global_alignment_lr, outside_rasterizer=outside_rasterizer, flow_scale=flow_scale, render_resolution=render_resolution, apply2gt=apply2gt, vis_pose=args.vis_pose, cubemap=cubemap, table1=table1)
gaussians.training_setup(opt)
# never use but don't delete this...
if hybrid:
specular_mlp = SpecularModel()
specular_mlp.train_setting(opt)
# modeling lens distortion
lens_net = iResNet().cuda()
l_lens_net = [{'params': lens_net.parameters(), 'lr': 1e-5}]
optimizer_lens_net = torch.optim.Adam(l_lens_net, eps=1e-15)
scheduler_lens_net = torch.optim.lr_scheduler.MultiStepLR(optimizer_lens_net, milestones=[7000], gamma=0.5)
# cubemap network
cubemap_net = iResNet(input_num=2).cuda()
l_cubemap_net = [{'params': cubemap_net.parameters(), 'lr': 1e-5}]
optimizer_cubemap_net = torch.optim.Adam(l_cubemap_net, eps=1e-15)
scheduler_cubemap_net = torch.optim.lr_scheduler.MultiStepLR(optimizer_cubemap_net, milestones=[2000, 7000, 9000], gamma=0.5)
if cubemap:
init_cubemap(scene, dataset, optimizer_cubemap_net, cubemap_net, scheduler_cubemap_net, resume_training=checkpoint, iresnet_lr=iresnet_lr, cubemap=cubemap)
for param_group in optimizer_cubemap_net.param_groups:
param_group['lr'] = iresnet_lr
print(f"The learning rate is reset to {param_group['lr']}")
# modeling vignetting
vignetting_model = VignettingModel(n_terms=4, device='cuda')
vignetting_optimizer = torch.optim.Adam(vignetting_model.parameters(), lr=0.01)
vignetting_scheduler = torch.optim.lr_scheduler.MultiStepLR(vignetting_optimizer, milestones=[1000], gamma=10)
# modeling entrance pupil shift
shift_factors = nn.Parameter(torch.tensor([-0., -0., -0.], requires_grad=True, device='cuda'))
shift_optimizer = torch.optim.Adam([shift_factors], lr=1e-5)
shift_scheduler = torch.optim.lr_scheduler.MultiStepLR(shift_optimizer, milestones=[30000], gamma=0.1)
shift_outside_factors = nn.Parameter(torch.tensor([0.002, 0.002, 0.002], requires_grad=True, device='cuda').repeat(1000000, 1))
shift_outside_optimizer = torch.optim.Adam([shift_outside_factors], lr=1e-5)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
print(f'loading iteraton {first_iter}')
lens_net = torch.load(os.path.join(scene.model_path, f'lens_net{first_iter}.pth'))
gaussians.restore(model_params, opt, validation=True)
if opt_cam:
scene.train_cameras = torch.load(os.path.join(scene.model_path, 'opt_cams.pt'))
scene.unnoisy_train_cameras = torch.load(os.path.join(scene.model_path, 'gt_cams.pt'))
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
if args.vis_pose:
opt_vis = EasyDict({'group': 'opt_pose', 'name': 'opt_pose', 'visdom': {'server': 'localhost', 'port': 8600, 'cam_depth': 0.5}})
if opt_vis.visdom and args.vis_pose:
is_open = check_socket_open(opt_vis.visdom.server,opt_vis.visdom.port)
retry = None
vis = visdom.Visdom(server=opt_vis.visdom.server,port=opt_vis.visdom.port,env=opt_vis.group)
pose_GT, pose_aligned = scene.loadAlignCameras(if_vis_train=True, path=scene.model_path)
vis_cameras(opt_vis, vis, step=0, poses=[pose_aligned, pose_GT])
os.makedirs(os.path.join(args.model_path, 'plot'), exist_ok=True)
# colmap init
if outside_rasterizer and not no_init_iresnet:
init_iresnet(scene, dataset, optimizer_lens_net, lens_net, scheduler_lens_net, resume_training=checkpoint, iresnet_lr=iresnet_lr)
for param_group in optimizer_lens_net.param_groups:
param_group['lr'] = iresnet_lr
print(f"The learning rate is reset to {param_group['lr']}")
# circular mask
if if_circular_mask:
height, width = scene.getTrainCameras().copy()[0].image_height, scene.getTrainCameras().copy()[0].image_width
circular_mask = torch.zeros((height, width), dtype=torch.bool)
center_x, center_y = width/2, height/2
radius = height/2 if height >= width else width/2
for y in range(height):
for x in range(width):
if (x - center_x)**2 + (y - center_y)**2 <= radius**2:
circular_mask[y, x] = 1.
circular_mask = circular_mask.unsqueeze(0)
circular_mask = circular_mask.repeat(3, 1, 1).cuda().float()
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
xyz_lr = gaussians.update_learning_rate(iteration)
if hybrid:
specular_mlp.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
if opt_shift:
c2w = viewpoint_cam.get_c2w()
R = c2w[:3, :3]
cam_pos = viewpoint_cam.get_camera_center()
look_at_direction_camera = torch.tensor([0, 0, -1.], device=cam_pos.device)
look_at_direction_world = R @ look_at_direction_camera
direction_vectors = gaussians._xyz - cam_pos
look_at_direction = -look_at_direction_world
direction_vectors_normalized = direction_vectors / direction_vectors.norm(dim=1, keepdim=True)
look_at_direction_normalized = look_at_direction / look_at_direction.norm()
dot_products = torch.sum(direction_vectors_normalized * look_at_direction_normalized, dim=1)
angles = torch.acos(dot_products)
shift = shift_outside_factors[:, 0] * angles**3 + shift_outside_factors[:, 1] * angles**5 + shift_outside_factors[:, 2] * angles**7
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
# input type
N = gaussians.get_xyz.shape[0]
mlp_color = 0
if cubemap:
mask_fov90 = torch.zeros((1, viewpoint_cam.image_height, viewpoint_cam.image_width), dtype=torch.float32).cuda()
mask_fov90[:, viewpoint_cam.image_height//2 - int(viewpoint_cam.focal_y):viewpoint_cam.image_height//2 + int(viewpoint_cam.focal_y), viewpoint_cam.image_width//2 - int(viewpoint_cam.focal_x):viewpoint_cam.image_width//2 + int(viewpoint_cam.focal_x)] = 1
img_list, viewspace_point_tensor_list, visibility_filter_list, radii_list = render_cubemap(render, viewpoint_cam, int(control_point_sample_scale), cubemap_net, mask_fov90, 0., 0., gaussians, pipe, background, mlp_color, shift_factors, iteration, hybrid, scene)
img_mask_list = []
for img in img_list:
mask = (img[0] > 0.001) | (img[1] > 0.001) | (img[2] > 0.001).cuda()
img_mask_list.append(mask)
if opt_shift:
if iteration % 1000 == 2:
log_vector_field_to_wandb(residual, magnification_factor=500, step=iteration)
if iteration % 100 == 1:
wandb.log({"vector_field/status": residual.mean().item()}, step=iteration)
else:
render_pkg = render(viewpoint_cam, gaussians, pipe, background, mlp_color, shift_factors, iteration=iteration, hybrid=hybrid, global_alignment=scene.getGlobalAlignment())
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
if iteration == 1 or (iteration > iresnet_opt_duration[0] and iteration < iresnet_opt_duration[1]):
flow_apply2_gt_or_img = None
if outside_rasterizer and not cubemap:
P_sensor, P_view_insidelens_direction = generate_control_pts(viewpoint_cam, control_point_sample_scale, flow_scale)
if not apply2gt:
image, mask, flow_apply2_gt_or_img = apply_distortion(flow_apply2_gt_or_img, lens_net, P_view_insidelens_direction, P_sensor, viewpoint_cam, image, apply2gt=apply2gt, flow_scale=flow_scale)
if if_circular_mask:
mask = mask * circular_mask
if apply2gt:
gt_image, mask, flow_apply2_gt_or_img = apply_distortion(flow_apply2_gt_or_img, lens_net, P_view_insidelens_direction, P_sensor, viewpoint_cam, image, apply2gt=apply2gt)
if start_vignetting < iteration:
vignetting_mask = vignetting_model((image.shape[1], image.shape[2]))
mask = mask * vignetting_mask
if iteration % 1000 == 1:
mask_ = vignetting_model((image.shape[1], image.shape[2])).cpu().detach().unsqueeze(0)
mask_ = mask_.permute(1, 2, 0)
mask_ = mask_.cpu().numpy()
wandb.log({f"vignetting_model/vis": wandb.Image(mask_)})
# Loss
if outside_rasterizer and not apply2gt:
gt_image = viewpoint_cam.fish_gt_image.cuda()
if not no_distortion_mask:
gt_image = gt_image * mask
Ll1 = l1_loss(image, gt_image)
ssim_loss = ssim(image, gt_image)
elif outside_rasterizer and apply2gt:
if not no_distortion_mask:
image = image * mask
Ll1 = l1_loss(image, gt_image)
ssim_loss = ssim(image, gt_image)
elif cubemap:
gt_image = viewpoint_cam.original_image.cuda()
mask_gt_image = generate_circular_mask(gt_image.shape, mask_radius).cuda()
Ll1_list = [
l1_loss(img_list[i] * mask_gt_image * img_mask_list[i], gt_image * mask_gt_image * img_mask_list[i])
for i in range(5)
]
Ll1_list_ = [l for l in Ll1_list if not torch.isnan(l).any()]
if Ll1_list_:
Ll1 = sum(Ll1_list_)
else:
continue
ssim_list = [
ssim(img_list[i] * mask_gt_image * img_mask_list[i], gt_image * mask_gt_image * img_mask_list[i])
for i in range(5)
]
ssim_list_ = [s for s in ssim_list if not torch.isnan(s).any()]
if ssim_list_:
ssim_loss = sum(ssim_list_)
else:
continue
else:
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
ssim_loss = ssim(image, gt_image)
if iteration % 10000 == 1:
if cubemap:
torchvision.utils.save_image(img_list[0] * mask_gt_image * img_mask_list[0], os.path.join(scene.model_path, f'render_{iteration}.png'))
torchvision.utils.save_image(gt_image * mask_gt_image * img_mask_list[0], os.path.join(scene.model_path, f'gt_{iteration}.png'))
else:
torchvision.utils.save_image(image, os.path.join(scene.model_path, f"render_{iteration}.png"))
torchvision.utils.save_image(gt_image, os.path.join(scene.model_path, f"gt_fish2perspective_{iteration}.png"))
if cubemap:
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (5.0 - ssim_loss)# + 0.1 * (loss_projection / len(camera_pairs[viewpoint_cam.uid]))
else:
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim_loss)# + 0.1 * (loss_projection / len(camera_pairs[viewpoint_cam.uid]))
if mcmc:
loss = loss + args.opacity_reg * torch.abs(gaussians.get_opacity).mean()
loss = loss + args.scale_reg * torch.abs(gaussians.get_scaling).mean()
loss.backward(retain_graph=True)
iter_end.record()
torch.cuda.synchronize()
with torch.no_grad():
# Progress bar
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{loss.item():.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
#if iteration in testing_iterations:
if iteration % 500 == 0 and args.vis_pose:
pose_GT, pose_aligned = scene.loadAlignCameras(if_vis_train=True, iteration=iteration, path=scene.model_path)
vis_cameras(opt_vis, vis, step=iteration, poses=[pose_aligned, pose_GT])
# Log and save
if not outside_rasterizer:
P_view_insidelens_direction = None
P_sensor = None
training_report(use_wandb, iteration, Ll1, ssim_loss, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background, mlp_color, shift_factors), lens_net, cubemap_net, opt_distortion, no_distortion_mask, outside_rasterizer, flow_scale, control_point_sample_scale, flow_apply2_gt_or_img, apply2gt, cubemap, table1, opt_shift, shift_outside_factors, mask_radius)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if hybrid:
specular_mlp.save_weights(args.model_path, iteration)
# Densification
if mcmc:
if iteration < opt.densify_until_iter and iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
dead_mask = (gaussians.get_opacity <= 0.005).squeeze(-1)
gaussians.relocate_gs(dead_mask=dead_mask)
gaussians.add_new_gs(cap_max=args.cap_max)
if use_wandb and iteration % 10 == 0:
scalars = {
f"gradient/2d_gradient": viewspace_point_tensor.grad.mean(),
}
wandb.log(scalars, step=iteration)
else:
if iteration < opt.densify_until_iter:
if not cubemap:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
viewspace_point_tensor_densify = render_pkg["viewspace_points_densify"]
gaussians.add_densification_stats(viewspace_point_tensor, viewspace_point_tensor_densify, visibility_filter, abs_grad)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
if abs_grad:
gaussians.densify_and_prune(opt.abs_densify_grad_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
else:
gaussians.densify_and_prune(opt.densify_grad_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if use_wandb and iteration % 1 == 0:
scalars = {
f"gradient/2d_gradient": viewspace_point_tensor.grad.mean(),
}
wandb.log(scalars, step=iteration)
elif cubemap:
for i in range(len(viewspace_point_tensor_list)):
if viewspace_point_tensor_list[i].grad == None:
continue
gaussians.max_radii2D[visibility_filter_list[i]] = torch.max(gaussians.max_radii2D[visibility_filter_list[i]], radii_list[i][visibility_filter_list[i]])
gaussians.add_densification_stats(viewspace_point_tensor_list[i], None, visibility_filter_list[i], abs_grad)
if use_wandb and iteration % 10 == 0:
scalars = {
f"gradient/2d_gradient_{i}": viewspace_point_tensor_list[i].grad.mean(),
}
wandb.log(scalars, step=iteration)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
if abs_grad:
gaussians.densify_and_prune(opt.abs_densify_grad_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
else:
gaussians.densify_and_prune(opt.densify_grad_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if cubemap and iteration > iresnet_opt_duration[0] and iteration < iresnet_opt_duration[1]:
if has_nan_in_gradients(cubemap_net):
print(iteration)
import pdb; pdb.set_trace() # Debug only if NaNs are found
#cubemap_net.i_resnet_linear.module_list[0].residual[0].weight
continue
optimizer_cubemap_net.step()
if has_nan_in_model(cubemap_net):
import pdb; pdb.set_trace() # Debug only if NaNs are found
optimizer_cubemap_net.zero_grad(set_to_none = True)
if mcmc:
L = build_scaling_rotation(gaussians.get_scaling, gaussians.get_rotation)
actual_covariance = L @ L.transpose(1, 2)
def op_sigmoid(x, k=100, x0=0.995):
return 1 / (1 + torch.exp(-k * (x - x0)))
noise = torch.randn_like(gaussians._xyz) * (op_sigmoid(1- gaussians.get_opacity))*args.noise_lr*xyz_lr
noise = torch.bmm(actual_covariance, noise.unsqueeze(-1)).squeeze(-1)
gaussians._xyz.add_(noise)
if start_vignetting < iteration:
vignetting_optimizer.step()
vignetting_optimizer.zero_grad(set_to_none = True)
if use_wandb and iteration % 10 == 0:
scalars = {
f"vignetting_model/a_k0": vignetting_model.a_k[0].cpu().item(),
f"vignetting_model/a_k1": vignetting_model.a_k[1].cpu().item(),
f"vignetting_model/a_k2": vignetting_model.a_k[2].cpu().item(),
f"vignetting_model/a_k3": vignetting_model.a_k[3].cpu().item(),
f"vignetting_model/beta_k0": vignetting_model.beta_k[0].cpu().item(),
f"vignetting_model/beta_k1": vignetting_model.beta_k[1].cpu().item(),
f"vignetting_model/beta_k2": vignetting_model.beta_k[2].cpu().item(),
f"vignetting_model/beta_k3": vignetting_model.beta_k[3].cpu().item(),
}
wandb.log(scalars, step=iteration)
if opt_distortion and iteration > iresnet_opt_duration[0] and iteration < iresnet_opt_duration[1]:
optimizer_lens_net.step()
optimizer_lens_net.zero_grad(set_to_none=True)
if opt_shift:
if iteration % 100 == 1:
wandb.log({"shift/0": shift_factors[0].item()}, step=iteration)
wandb.log({"shift/1": shift_factors[1].item()}, step=iteration)
wandb.log({"shift/2": shift_factors[2].item()}, step=iteration)
wandb.log({"shift_outside/0": shift_outside_factors[0, 0].item()}, step=iteration)
wandb.log({"shift_outside/1": shift_outside_factors[0, 1].item()}, step=iteration)
wandb.log({"shift_outside/2": shift_outside_factors[0, 2].item()}, step=iteration)
shift_outside_optimizer.step()
shift_outside_optimizer.zero_grad(set_to_none=True)
if opt_cam:
scene.optimizer_rotation.step()
scene.optimizer_translation.step()
scene.optimizer_rotation.zero_grad(set_to_none=True)
scene.optimizer_translation.zero_grad(set_to_none=True)
scene.scheduler_rotation.step()
scene.scheduler_translation.step()
if opt_intrinsic:
scene.optimizer_fovx.step()
scene.optimizer_fovy.step()
scene.optimizer_fovx.zero_grad(set_to_none=True)
scene.optimizer_fovy.zero_grad(set_to_none=True)
scene.scheduler_fovx.step()
scene.scheduler_fovy.step()
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
torch.save(lens_net, os.path.join(scene.model_path, f'lens_net{iteration}.pth'))
if opt_cam:
torch.save(scene.train_cameras, os.path.join(scene.model_path, 'opt_cams.pt'))
torch.save(scene.unnoisy_train_cameras, os.path.join(scene.model_path, 'gt_cams.pt'))
torch.save(scene.train_cameras, os.path.join(scene.model_path, f'cams_train{iteration}.pt'))
def training_report(use_wandb, iteration, Ll1, ssim_loss, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, lens_net, cubemap_net, opt_distortion, no_distortion_mask, outside_rasterizer, flow_scale, control_point_sample_scale, flow_apply2_gt_or_img, apply2gt, cubemap, table1, opt_shift, shift_outside_factors, mask_radius):
if use_wandb and iteration % 10 == 0:
scalars = {
f"loss/l1_loss": Ll1,
f"loss/ssim": ssim_loss,
f"loss/overall_loss": loss,
}
wandb.log(scalars, step=iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : []},
{'name': 'train', 'cameras' : []})
for camera in scene.getTestCameras()[:]:
validation_configs[0]['cameras'].append(
Camera(camera.colmap_id, camera.R, camera.T, camera.intrinsic_matrix_numpy, camera.FoVx, camera.FoVy, camera.focal_x, camera.focal_y, camera.original_image_pil, None, camera.fish_gt_image_pil, camera.image_name, camera.uid, depth=None, ori_path=camera.ori_path, outside_rasterizer=camera.outside_rasterizer, test_outside_rasterizer=camera.test_outside_rasterizer, orig_fov_w=camera.orig_fov_w, orig_fov_h=camera.orig_fov_h, original_image_resolution=camera.original_image_resolution, fish_gt_image_resolution=camera.fish_gt_image_resolution, flow_scale=camera.flow_scale, apply2gt=camera.apply2gt, render_resolution=camera.render_resolution, cubemap=cubemap, table1=table1)
)
for camera in scene.getTrainCameras()[:5]:
validation_configs[1]['cameras'].append(
Camera(camera.colmap_id, camera.R, camera.T, camera.intrinsic_matrix_numpy, camera.FoVx, camera.FoVy, camera.focal_x, camera.focal_y, camera.original_image_pil, None, camera.fish_gt_image_pil, camera.image_name, camera.uid, depth=None, ori_path=camera.ori_path, outside_rasterizer=camera.outside_rasterizer, test_outside_rasterizer=camera.test_outside_rasterizer, orig_fov_w=camera.orig_fov_w, orig_fov_h=camera.orig_fov_h, original_image_resolution=camera.original_image_resolution, fish_gt_image_resolution=camera.fish_gt_image_resolution, flow_scale=camera.flow_scale, apply2gt=camera.apply2gt, render_resolution=camera.render_resolution, cubemap=cubemap)
)
file_path = os.path.join(scene.model_path, 'evaluation_results.txt')
with open(file_path, 'a') as f:
for config in validation_configs:
name = config['name']
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssims = []
lpipss = []
os.makedirs(os.path.join(scene.model_path, 'training_val_{}').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/gt').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred').format(iteration), exist_ok=True)
if cubemap:
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred/forward').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred/up').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred/down').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred/left').format(iteration), exist_ok=True)
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/renderred/right').format(iteration), exist_ok=True)
if table1:
os.makedirs(os.path.join(scene.model_path, 'training_val_{}/table1').format(iteration), exist_ok=True)
for idx, viewpoint in enumerate(config['cameras']):
if opt_shift:
c2w = viewpoint.get_c2w()
R = c2w[:3, :3]
cam_pos = viewpoint.get_camera_center()
look_at_direction_camera = torch.tensor([0, 0, -1.], device=cam_pos.device)
look_at_direction_world = R @ look_at_direction_camera
direction_vectors = scene.gaussians._xyz - cam_pos
look_at_direction = -look_at_direction_world
direction_vectors_normalized = direction_vectors / direction_vectors.norm(dim=1, keepdim=True)
look_at_direction_normalized = look_at_direction / look_at_direction.norm()
dot_products = torch.sum(direction_vectors_normalized * look_at_direction_normalized, dim=1)
angles = torch.acos(dot_products)
shift = shift_outside_factors[:, 0] * angles**3 + shift_outside_factors[:, 1] * angles**5 + shift_outside_factors[:, 2] * angles**7
scene.gaussians._xyz = scene.gaussians._xyz + shift.unsqueeze(1) * look_at_direction_world.detach()
if table1 and name == 'test':
gt_image = viewpoint.original_image.cuda()
torchvision.utils.save_image(gt_image, os.path.join(scene.model_path, 'training_val_{}/table1/{}_gt'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, global_alignment=scene.getGlobalAlignment())["render"], 0.0, 1.0)
torchvision.utils.save_image(image, os.path.join(scene.model_path, 'training_val_{}/table1/{}_rendering'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssims.append(ssim(image, gt_image))
lpipss.append(lpips(image, gt_image))
continue
if not cubemap:
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, global_alignment=scene.getGlobalAlignment())["render"], 0.0, 1.0)
torchvision.utils.save_image(image, os.path.join(scene.model_path, 'training_val_{}/renderred/{}'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
if outside_rasterizer:
if not apply2gt:
image = F.grid_sample(
image.unsqueeze(0),
flow_apply2_gt_or_img.unsqueeze(0),
mode="bilinear",
padding_mode="zeros",
align_corners=True,
)
image = center_crop(image, viewpoint.fish_gt_image_resolution[1], viewpoint.fish_gt_image_resolution[2]).squeeze(0)
mask = (~((image.squeeze(0)[0]==0.) & (image.squeeze(0)[1]==0.)).unsqueeze(0)).float()
if iteration == 1:
gt_image = viewpoint.fish_gt_image.cuda()
else:
gt_image = viewpoint.fish_gt_image.cuda() * mask
torchvision.utils.save_image(gt_image.cpu(), os.path.join(scene.model_path, 'training_val_{}/gt/masked_{}'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
torchvision.utils.save_image(viewpoint.fish_gt_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
torchvision.utils.save_image(image, os.path.join(scene.model_path, 'training_val_{}/renderred/distorted_{}'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
if use_wandb and name == 'train':
img_tensor = torch.cat((image.cpu(), gt_image.cpu()), dim=2)
img_tensor = img_tensor.permute(1, 2, 0)
img_numpy = img_tensor.cpu().numpy()
wandb.log({f"images/gt_rendering_{viewpoint.image_name}": wandb.Image(img_numpy)})
elif apply2gt:
P_sensor, P_view_insidelens_direction = generate_control_pts(viewpoint, control_point_sample_scale, flow_scale)
gt_image, mask, flow_apply2_gt_or_img = apply_distortion(lens_net, P_view_insidelens_direction, P_sensor, viewpoint, image, apply2gt=apply2gt)
if iteration == 1:
image = image
else:
image = image * mask
torchvision.utils.save_image(gt_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}_perspective'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
torchvision.utils.save_image(viewpoint.fish_gt_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}_fish'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
torchvision.utils.save_image(viewpoint.original_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}_undis'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
torchvision.utils.save_image(image*mask, os.path.join(scene.model_path, 'training_val_{}/renderred/{}_masked'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
if use_wandb and name == 'train':
img_tensor = torch.cat(((image*mask).cpu(), gt_image.cpu()), dim=2)
img_tensor = img_tensor.permute(1, 2, 0)
img_numpy = img_tensor.cpu().numpy()
wandb.log({f"images/gt_rendering_{viewpoint.image_name}": wandb.Image(img_numpy)})
elif cubemap:
mask_fov90 = torch.zeros((1, viewpoint.image_height, viewpoint.image_width), dtype=torch.float32).cuda()
mask_fov90[:, viewpoint.image_height//2 - int(viewpoint.focal_y) - 2:viewpoint.image_height//2 + int(viewpoint.focal_y) + 2, viewpoint.image_width//2 - int(viewpoint.focal_x) - 2:viewpoint.image_width//2 + int(viewpoint.focal_x) + 2] = 1
torchvision.utils.save_image(mask_fov90.float(), os.path.join(scene.model_path, 'mask1.png'))
img_list, img_perspective_list = render_cubemap(render, viewpoint, int(control_point_sample_scale), cubemap_net, mask_fov90, 0., 0., scene.gaussians, *renderArgs, iteration, False, scene, validation=True)
direction_name = ['forward', 'up', 'down', 'left', 'right']
for i in range(5):
torchvision.utils.save_image(img_perspective_list[i], os.path.join(scene.model_path, 'training_val_{}/renderred/{}/{}_perspective'.format(iteration, direction_name[i], viewpoint.image_name) + "_" + name + ".png"))
final_image = torch.zeros_like(img_list[0])
intensity_final = final_image.sum(dim=0, keepdim=True) # Track the current intensities of the final image
for img in img_list:
intensity_img = img.sum(dim=0, keepdim=True) # Calculate the intensity for the current image
mask = intensity_img > intensity_final # Find pixels where the new image has a larger intensity
final_image = torch.where(mask, img, final_image) # Update final image where intensity is larger
intensity_final = torch.where(mask, intensity_img, intensity_final) # Update intensity tracker
torchvision.utils.save_image(final_image, os.path.join(scene.model_path, 'training_val_{}/renderred/{}_distorted_stitch'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
mask_gt_image = generate_circular_mask(viewpoint.original_image.shape, mask_radius).cuda()
torchvision.utils.save_image(final_image*mask_gt_image, os.path.join(scene.model_path, 'training_val_{}/renderred/{}_distorted_stitch_masked'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
gt_image = viewpoint.original_image.cuda()
torchvision.utils.save_image(gt_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}_perspective'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
if use_wandb and name == 'train':
img_tensor = torch.cat((final_image.clamp(0, 1).cpu(), gt_image.cpu()), dim=2)
img_tensor = img_tensor.permute(1, 2, 0)
img_numpy = img_tensor.cpu().numpy()
wandb.log({f"images/gt_rendering_{viewpoint.image_name}": wandb.Image(img_numpy)})
else:
gt_image = viewpoint.original_image.cuda()
torchvision.utils.save_image(gt_image, os.path.join(scene.model_path, 'training_val_{}/gt/{}_perspective'.format(iteration, viewpoint.image_name) + "_" + name + ".png"))
if use_wandb and name == 'train':
img_tensor = torch.cat((image.cpu(), gt_image.cpu()), dim=2)
img_tensor = img_tensor.permute(1, 2, 0)
img_numpy = img_tensor.cpu().numpy()
wandb.log({f"images/gt_rendering_{viewpoint.image_name}": wandb.Image(img_numpy)})
if not cubemap:
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssims.append(ssim(image, gt_image))
lpipss.append(lpips(image, gt_image))
elif cubemap:
mask_gt_image = generate_circular_mask(gt_image.shape, mask_radius).cuda()
l1_test += l1_loss(final_image*mask_gt_image, gt_image*mask_gt_image).mean().double()
psnr_test += psnr(final_image*mask_gt_image, gt_image*mask_gt_image).mean().double()
ssims.append(ssim(final_image*mask_gt_image, gt_image*mask_gt_image))
lpipss.append(lpips(final_image*mask_gt_image, gt_image*mask_gt_image))
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
print("\nSSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
print("\nLPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
f.write("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
f.write("\nSSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
f.write("\nLPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
if use_wandb and name == 'test':
scalars = {
f"validation/l1_loss": l1_test,
f"validation/psnr": psnr_test,
f"validation/ssim": torch.tensor(ssims).mean().item(),
f"validation/lpips": torch.tensor(lpipss).mean().item(),
}
wandb.log(scalars, step=iteration)
torch.cuda.empty_cache()
if use_wandb and iteration % 10 == 0:
wandb.log({"stats/gs_num": scene.gaussians.get_xyz.shape[0]}, step=iteration)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[7_000, 15_000, 30_000])
parser.add_argument("--start_checkpoint", type=str, default = None)
# wandb setting
parser.add_argument("--wandb_project_name", type=str, default = None)
parser.add_argument("--wandb_group_name", type=str, default = None)
parser.add_argument("--wandb_mode", type=str, default = "online")
parser.add_argument("--resume", action="store_true", default=False)
# random init point cloud
parser.add_argument("--random_init_pc", action="store_true", default=False)
# use hybrid for specular
parser.add_argument("--hybrid", action="store_true", default=False)
# if optimize camera poses
parser.add_argument("--opt_cam", action="store_true", default=False)
# if opt camera intrinsic
parser.add_argument("--opt_intrinsic", action="store_true", default=False)
parser.add_argument("--r_t_lr", nargs="+", type=float, default=[0.01, 0.01])
# learning rate for global alignment
parser.add_argument('--global_alignment_lr', type=float, default=0.01)
# noise for rotation and translation
parser.add_argument("--r_t_noise", nargs="+", type=float, default=[0., 0.])
# rotation filter for light_glue
parser.add_argument('--angle_threshold', type=float, default=30.)
# if optimize camera poses with projection_loss
parser.add_argument("--projection_loss", action="store_true", default=False)
# if visualize camera pose
parser.add_argument("--vis_pose", action="store_true", default=False)
# optimize distortion
parser.add_argument("--opt_distortion", action="store_true", default=False)
parser.add_argument('--start_vignetting', type=int, default=10000000000)
parser.add_argument("--extra_loss", action="store_true", default=False)
parser.add_argument('--start_opt_lens', type=int, default=1)
parser.add_argument('--extend_scale', type=float, default=2.)
parser.add_argument('--control_point_sample_scale', type=float, default=8.)
parser.add_argument("--outside_rasterizer", action="store_true", default=False)
parser.add_argument("--apply2gt", action="store_true", default=False)
parser.add_argument("--abs_grad", action="store_true", default=False)
parser.add_argument('--densi_num', type=float, default=0.0002)
parser.add_argument("--if_circular_mask", action="store_true", default=False)
parser.add_argument('--mask_radius', type=int, default=512)
# flow_scale[0] is width and flow_scale[1] is height
parser.add_argument("--flow_scale", nargs="+", type=float, default=[1., 1.])
parser.add_argument("--render_resolution", type=float, default=1.)
parser.add_argument('--iresnet_lr', type=float, default=1e-7)
# the optimization duration of iresnet
parser.add_argument("--iresnet_opt_duration", nargs="+", type=int, default=[0, 30000])
parser.add_argument('--opacity_threshold', type=float, default=0.005)
parser.add_argument("--opt_shift", action="store_true", default=False)
parser.add_argument("--no_distortion_mask", action="store_true", default=False)
parser.add_argument("--mcmc", action="store_true", default=False)
parser.add_argument("--no_init_iresnet", action="store_true", default=False)
parser.add_argument("--cubemap", action="store_true", default=False)
parser.add_argument("--table1", action="store_true", default=False)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize wandb
os.makedirs(args.model_path, exist_ok=True)
if args.wandb_project_name != None:
wandb.login()
wandb_run = init_wandb(args,
project=args.wandb_project_name,
mode=args.wandb_mode,
resume=args.resume,
use_group=True,
set_group=args.wandb_group_name
)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(
lp.extract(args), op.extract(args), pp.extract(args),
args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from,
use_wandb=(args.wandb_project_name!=None), random_init=args.random_init_pc, hybrid=args.hybrid, opt_cam=args.opt_cam,
opt_shift=args.opt_shift, no_distortion_mask=args.no_distortion_mask, opt_distortion=args.opt_distortion,
start_vignetting=args.start_vignetting, opt_intrinsic=args.opt_intrinsic, r_t_lr=args.r_t_lr, r_t_noise=args.r_t_noise,
global_alignment_lr=args.global_alignment_lr, extra_loss=args.extra_loss, start_opt_lens=args.start_opt_lens,
extend_scale=args.extend_scale, control_point_sample_scale=args.control_point_sample_scale, outside_rasterizer=args.outside_rasterizer,
abs_grad=args.abs_grad, densi_num=args.densi_num, mask_radius=args.mask_radius, if_circular_mask=args.if_circular_mask, flow_scale=args.flow_scale,
render_resolution=args.render_resolution, apply2gt=args.apply2gt, iresnet_lr=args.iresnet_lr, iresnet_opt_duration=args.iresnet_opt_duration, no_init_iresnet=args.no_init_iresnet, opacity_threshold=args.opacity_threshold, mcmc=args.mcmc, cubemap=args.cubemap, table1=args.table1)
# All done
print("\nTraining complete.")