-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathContents.m
100 lines (96 loc) · 4.45 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
% Graph Algorithms
%
% Searching through a graph
% bfs - Breadth first search
% dfs - Depth first search
% astar_search - Heuristic astar graph search
% breadth_first_search - Breadth first search with visitors
% depth_first_search - Depth first search with visitors
%
% Shortest Path Algorithms
% shortest_paths - Single source shortest path wrapper
% all_shortest_paths - All pairs shortest path wrapper
% dijkstra_sp - Dijkstra's shorest path algorithm
% bellman_ford_sp - Bellman-Ford shortest path algorithm
% dag_sp - Shortest path on directed acyclic graph
% johnson_all_sp - Johnson all pairs shortest path algorithm
% floyd_warshall_all_sp - Floyd-Warshall all pairs shortest path alg
%
% Minimum Spanning Tree
% mst - Minimum spanning tree wrapper
% kruskal_mst - Kruskal's minimum spanning tree algorithm
% prim_mst - Prim's minimum spanning tree algorithm
%
% Connected Components
% components - Connected components of a graph
% biconnected_components - Biconnected connected components of a graph
%
% Flow Algorithms
% max_flow - Solve a maximum flow problem
% edmunds_karp_max_flow - Edmunds-Karp max flow algorithm
% kolmogorov_max_flow - Kolmogorov's max flow algorithm
% push_relabel_max_flow - Goldberg's push-relabel max flow algorithm
%
% Layouts
% circle_graph_layout - Simple layout of vertices on a circle
% random_graph_layout - Random layout of vertices in plane or lattice
% kamada_kawai_spring_layout- Spring based graph layout
% gursoy_atun_layout - Topology based graph layout
% fruchterman_reingold_force_directed_layout - Force directed graph layout
%
% Matchings
% matching - Compute a maximum cardinality matching
% edmonds_maximum_cardinality_matching - Edmonds' algorithm for matching
% maximal_matching - Compute maximal (not maximum) matchings
% test_matching - Test if a matching is maximum cardinality
%
% Statistics
% betweenness_centrality - Betweeness centrality scores for all nodes
% clustering_coefficients - Clustering coefficients for all nodes
% core_numbers - Compute in-degree core numbers for all nodes
% lengauer_tarjan_dominator_tree - Compute a dominator tree for a graph
% num_edges - The number of edges in a graph
% num_vertices - The number of vertices in a graph
% topological_order - Compute a topological order for a dag
% test_dag - Test if a graph is directed and acyclic
%
% Graphs
% clique_graph - Generates a clique or bipartite clique
% cycle_graph - Generates a cycle graph
% erdos_reyni - Generates an erdos_reyni, or Gnp, graph
% grid_graph - Generate a grid or hypergrid graph
% star_graph - Generates a star graph
% wheel_graph - Generates a wheel graph
%
% Visitors
% combine_visitors - Produce a new combination visitor
%
% Utilities
% edge_weight_index - Convert between graphs and edge indices
% edge_weight_vector - Generate edge_weight vectors from matrices
% indexed_sparse - Generate a sparse matrix with edge indices
% path_from_pred - Convert a predecessor array to a path
% tree_from_pred - Convert predecessor array to a tree
%
% Examples and Demos
% EXAMPLES/RED_BLACK - Compute a red-black ordering of a matrix
% examples/record_alg - Use visitors to show how an algorithm works
% examples/reweighted_graphs - Show how reweighted graphs work
% examples/core_numbers_example - Demonstrate core numbers
% examples/planar_graph - A few planar graph examples
% examples/new_in_3_0 - New features in version 3.0
% examples/new_in_4_0 - New features in version 4.0
% examples/layouts - Simple demonstrations of layout algorithms
%
% Options
% set_matlab_bgl_default - Set default options
% future functions...
% sample_paths - Computes path statistics
% Matrix Orderings
% graph_perm - Graph permutation wrapper
% reverse_cuthill_mckee_perm - Reverse Cuthill-McKee ordering
% minimum_degree_perm - Minimum degree ordering
% king_perm - King ordering
% sloan_perm - Sloan ordering
% David Gleich
% Copyright, Stanford University, 2006-2008