-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathfloyd_warshall_all_sp.m
40 lines (36 loc) · 1.19 KB
/
floyd_warshall_all_sp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function [D,P] = floyd_warshall_all_sp(A,varargin)
% FLOYD_WARSHALL_ALL_SP Compute the weighted all-pairs shortest path problem.
%
% The Floyd-Warshall algorithm for the all-pairs shortest path problem
% works only on graphs without negative edge weights. This method should
% be used over the Johnson algorithm for dense graphs.
%
% This algorithm can return the predecessor matrix.
%
% This method works on weighted directed graphs.
% The runtime is O(V^3).
%
% See the shortest_paths function for calling information. This function
% just calls all_shortest_paths(...,struct('algname','floyd_warshall'));
%
% Example:
% load graphs/clr-26-1.mat
% floyd_warshall_all_sp(A)
%
% See also ALL_SHORTEST_PATHS, JOHNSON_ALL_SP.
% David Gleich
% Copyright, Stanford University, 2006-2008
%% History
% 2006-04-23: Initial version
% 2008-04-02: Added documenation for predecessor matrix
% 2008-10-07: Changed options parsing
%%
algname = 'floyd_warshall';
if ~isempty(varargin),
options = merge_options(struct(),varargin{:});
options.algname= algname;
else options = struct('algname',algname);
end
if nargout > 1, [D,P] = all_shortest_paths(A,options);
else D = all_shortest_paths(A,options);
end