-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathmst.m
166 lines (142 loc) · 5.59 KB
/
mst.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
function [out1 out2 out3] = mst(A,varargin)
% MST Compute a minimum spanning tree for an undirected graph A.
%
% There are two ways to call MST.
% T = mst(A)
% [i j v] = mst(A)
% The first call returns the minimum spanning tree T of A.
% The second call returns the set of edges in the minimum spanning tree.
% The calls are related by
% T = sparse(i,j,v,size(A,1), size(A,1));
% T = T + T';
% The optional algname parameter chooses which algorithm to use to compute
% the minimum spanning tree. Note that the set of edges returned is not
% symmetric and the final graph must be explicitly symmetrized.
%
% This method works on undirected graphs.
%
% ... = mst(A,...) takes a set of
% key-value pairs or an options structure. See set_matlab_bgl_options
% for the standard options.
% options.algname: the minimum spanning tree algorithm
% ['prim' | {'kruskal'}]
% options.edge_weight: a double array over the edges with an edge
% weight for each node, see EDGE_INDEX and EXAMPLES/REWEIGHTED_GRAPHS
% for information on how to use this option correctly, see Note 1.
% [{'matrix'} | length(nnz(A)) double vector]
% options.root: specify the root or starting vertex for the algorithm
% This option only applies to prim's algorithm.
% [{'none'} | any vertex number]
% options.fix_diag: remove any diagonal entries to get correct output
% from Prim's algorithm [0 | {1}]; beware this option with the
% edge_weight option too.
%
% Note: the input to this function must be symmetric, so this function
% ignores the 'notrans' default option and never transposes the input.
%
% Note 1: see EXAMPLES/REWEIGHTED_GRAPHS for how to reweight a symmetric
% graph correctly. There are a few complicated details.
%
% Example:
% load graphs/clr-24-1.mat
% mst(A)
%
% See also PRIM_MST, KRUSKAL_MST
% David Gleich
% Copyright, Stanford University, 2006-2008
%% History
% 2006-05-03: Changed to using kruskal as the default following problems
% with prim due to negative edge weights.
% 2006-05-31: Added full2sparse option
% 2006-06-15: Fixed error with graph symmetric (T+T') instead of max(T,T')
% found by Mark Cummins
% 2006-11-09: Temporary fix for disconnected graphs and the number of edges
% in the mst is LESS than n-1.
% 2006-11-10: Added warning for prim with disconnected graphs.
% 2007-04-09: Fixed documentation typos. (Thanks Chris Maes.)
% 2007-04-09: Fixed bug with 0 weighted graphs. (Thanks Chris Maes.)
% 2007-04-20: Added edge weight option
% 2007-07-12: Fixed edge_weight documentation
% Added note about symmetric edge weights
% 2007-12-14: Added rooted option for prim's algorithm
% 2008-10-07: Changed options parsing
% Addressed issue with incorrect prim output and fixed matrix diagonal
%%
[trans check full2sparse] = get_matlab_bgl_options(varargin{:});
if full2sparse && ~issparse(A), A = sparse(A); end
if trans, end % no trans check
options = struct('algname', 'kruskal', 'edge_weight', 'matrix', ...
'root', 'none', 'fix_diag', 1);
options = merge_options(options,varargin{:});
fixed_diag= 0;
if options.fix_diag && strcmp(options.algname,'prim') ...
&& any(diag(A)), A = A - diag(diag(A)); fixed_diag= 1; end
% edge_weights is an indicator that is 1 if we are using edge_weights
% passed on the command line or 0 if we are using the matrix.
edge_weights = 0;
edge_weight_opt = 'matrix';
if strcmp(options.edge_weight, 'matrix')
% do nothing if we are using the matrix weights
else
edge_weights = 1;
edge_weight_opt = options.edge_weight;
if fixed_diag, warning('matlab_bgl:fix_diag',...
'the diagonal was adjusted, the edge_weight option may be incorrect');
end
end
if check
% make sure the matrix is symmetric
if ~edge_weights
check_matlab_bgl(A,struct('sym',1,'values',1,...
'noneg', strcmp(options.algname,'prim')));
else
check_matlab_bgl(A,struct());
if strcmp(options.algname,'prim') && any(edge_weights < 0)
error('matlab_bgl:invalidParameter', ...
'the edge_weight array must be non-negative');
end
% check for symmetry
[i j] = find(A);
Av = sparse(i,j,edge_weight_opt,size(A,1), size(A,2));
check_matlab_bgl(Av,struct('sym',1,'nodefault',1));
end
if strcmp(options.algname,'prim')
if max(components(A)) > 1
warning('mst:connected', ...
['The output from MST using Prim''s algorithm\n' ...
'on a disconnected graph is only a partial spanning tree.']);
end
end
end
% old temporary fix for incorrect number of edges
% num_components = max(components(A));
if strcmp(options.root,'none')
root = 0; % a flag used to denote "no root" to the mex
elseif isa(options.root, 'double')
root = options.root;
else
error('matlab_bgl:invalidParameter', ...
'options.root is not ''none'' or a vertex number.');
end
[i j v] = mst_mex(A,lower(options.algname),edge_weight_opt,root);
% old temporary fix for disconnected graphs
% if (num_components > 1)
% i = i(1:end-(num_components-1));
% j = j(1:end-(num_components-1));
% v = v(1:end-(num_components-1));
% end
if (nargout == 1 || nargout == 0)
T = sparse(i,j,v,size(A,1),size(A,1));
T = T + T';
out1 = T;
if nnz(T) == 0 && nnz(A) > 0
warning('mst:empty', ...
['MST is empty. This can occur if you have reweighted\n' ...
'the matrix with 0 edge weights. Try the [i j v] = mst(...)\n' ...
'call instead for that case.']);
end
else
out1 = i;
out2 = j;
out3 = v;
end;