-
Notifications
You must be signed in to change notification settings - Fork 444
/
Copy pathtrain.py
263 lines (240 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#! /usr/bin/env python
import tensorflow as tf
import numpy as np
import re
import os
import time
import datetime
import gc
from input_helpers import InputHelper
from siamese_network import SiameseLSTM
from siamese_network_semantic import SiameseLSTMw2v
from tensorflow.contrib import learn
import gzip
from random import random
# Parameters
# ==================================================
tf.flags.DEFINE_boolean("is_char_based", True, "is character based syntactic similarity. "
"if false then word embedding based semantic similarity is used."
"(default: True)")
tf.flags.DEFINE_string("word2vec_model", "wiki.simple.vec", "word2vec pre-trained embeddings file (default: None)")
tf.flags.DEFINE_string("word2vec_format", "text", "word2vec pre-trained embeddings file format (bin/text/textgz)(default: None)")
tf.flags.DEFINE_integer("embedding_dim", 300, "Dimensionality of character embedding (default: 300)")
tf.flags.DEFINE_float("dropout_keep_prob", 1.0, "Dropout keep probability (default: 1.0)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
tf.flags.DEFINE_string("training_files", "person_match.train2", "training file (default: None)") #for sentence semantic similarity use "train_snli.txt"
tf.flags.DEFINE_integer("hidden_units", 50, "Number of hidden units (default:50)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 300, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 1000, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 1000, "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
if FLAGS.training_files==None:
print("Input Files List is empty. use --training_files argument.")
exit()
max_document_length=15
inpH = InputHelper()
train_set, dev_set, vocab_processor,sum_no_of_batches = inpH.getDataSets(FLAGS.training_files,max_document_length, 10,
FLAGS.batch_size, FLAGS.is_char_based)
trainableEmbeddings=False
if FLAGS.is_char_based==True:
FLAGS.word2vec_model = False
else:
if FLAGS.word2vec_model==None:
trainableEmbeddings=True
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
"You are using word embedding based semantic similarity but "
"word2vec model path is empty. It is Recommended to use --word2vec_model argument. "
"Otherwise now the code is automatically trying to learn embedding values (may not help in accuracy)"
"\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n")
else:
inpH.loadW2V(FLAGS.word2vec_model, FLAGS.word2vec_format)
# Training
# ==================================================
print("starting graph def")
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
print("started session")
with sess.as_default():
if FLAGS.is_char_based:
siameseModel = SiameseLSTM(
sequence_length=max_document_length,
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
hidden_units=FLAGS.hidden_units,
l2_reg_lambda=FLAGS.l2_reg_lambda,
batch_size=FLAGS.batch_size
)
else:
siameseModel = SiameseLSTMw2v(
sequence_length=max_document_length,
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
hidden_units=FLAGS.hidden_units,
l2_reg_lambda=FLAGS.l2_reg_lambda,
batch_size=FLAGS.batch_size,
trainableEmbeddings=trainableEmbeddings
)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
print("initialized siameseModel object")
grads_and_vars=optimizer.compute_gradients(siameseModel.loss)
tr_op_set = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
print("defined training_ops")
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
print("defined gradient summaries")
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", siameseModel.loss)
acc_summary = tf.summary.scalar("accuracy", siameseModel.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)
# Write vocabulary
vocab_processor.save(os.path.join(checkpoint_dir, "vocab"))
# Initialize all variables
sess.run(tf.global_variables_initializer())
print("init all variables")
graph_def = tf.get_default_graph().as_graph_def()
graphpb_txt = str(graph_def)
with open(os.path.join(checkpoint_dir, "graphpb.txt"), 'w') as f:
f.write(graphpb_txt)
if FLAGS.word2vec_model :
# initial matrix with random uniform
initW = np.random.uniform(-0.25,0.25,(len(vocab_processor.vocabulary_), FLAGS.embedding_dim))
#initW = np.zeros(shape=(len(vocab_processor.vocabulary_), FLAGS.embedding_dim))
# load any vectors from the word2vec
print("initializing initW with pre-trained word2vec embeddings")
for w in vocab_processor.vocabulary_._mapping:
arr=[]
s = re.sub('[^0-9a-zA-Z]+', '', w)
if w in inpH.pre_emb:
arr=inpH.pre_emb[w]
elif w.lower() in inpH.pre_emb:
arr=inpH.pre_emb[w.lower()]
elif s in inpH.pre_emb:
arr=inpH.pre_emb[s]
elif s.isdigit():
arr=inpH.pre_emb["zero"]
if len(arr)>0:
idx = vocab_processor.vocabulary_.get(w)
initW[idx]=np.asarray(arr).astype(np.float32)
print("Done assigning intiW. len="+str(len(initW)))
inpH.deletePreEmb()
gc.collect()
sess.run(siameseModel.W.assign(initW))
def train_step(x1_batch, x2_batch, y_batch):
"""
A single training step
"""
if random()>0.5:
feed_dict = {
siameseModel.input_x1: x1_batch,
siameseModel.input_x2: x2_batch,
siameseModel.input_y: y_batch,
siameseModel.dropout_keep_prob: FLAGS.dropout_keep_prob,
}
else:
feed_dict = {
siameseModel.input_x1: x2_batch,
siameseModel.input_x2: x1_batch,
siameseModel.input_y: y_batch,
siameseModel.dropout_keep_prob: FLAGS.dropout_keep_prob,
}
_, step, loss, accuracy, dist, sim, summaries = sess.run([tr_op_set, global_step, siameseModel.loss, siameseModel.accuracy, siameseModel.distance, siameseModel.temp_sim, train_summary_op], feed_dict)
time_str = datetime.datetime.now().isoformat()
print("TRAIN {}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
print(y_batch, dist, sim)
def dev_step(x1_batch, x2_batch, y_batch):
"""
A single training step
"""
if random()>0.5:
feed_dict = {
siameseModel.input_x1: x1_batch,
siameseModel.input_x2: x2_batch,
siameseModel.input_y: y_batch,
siameseModel.dropout_keep_prob: 1.0,
}
else:
feed_dict = {
siameseModel.input_x1: x2_batch,
siameseModel.input_x2: x1_batch,
siameseModel.input_y: y_batch,
siameseModel.dropout_keep_prob: 1.0,
}
step, loss, accuracy, sim, summaries = sess.run([global_step, siameseModel.loss, siameseModel.accuracy, siameseModel.temp_sim, dev_summary_op], feed_dict)
time_str = datetime.datetime.now().isoformat()
print("DEV {}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
dev_summary_writer.add_summary(summaries, step)
print (y_batch, sim)
return accuracy
# Generate batches
batches=inpH.batch_iter(
list(zip(train_set[0], train_set[1], train_set[2])), FLAGS.batch_size, FLAGS.num_epochs)
ptr=0
max_validation_acc=0.0
for nn in xrange(sum_no_of_batches*FLAGS.num_epochs):
batch = batches.next()
if len(batch)<1:
continue
x1_batch,x2_batch, y_batch = zip(*batch)
if len(y_batch)<1:
continue
train_step(x1_batch, x2_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
sum_acc=0.0
if current_step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
dev_batches = inpH.batch_iter(list(zip(dev_set[0],dev_set[1],dev_set[2])), FLAGS.batch_size, 1)
for db in dev_batches:
if len(db)<1:
continue
x1_dev_b,x2_dev_b,y_dev_b = zip(*db)
if len(y_dev_b)<1:
continue
acc = dev_step(x1_dev_b, x2_dev_b, y_dev_b)
sum_acc = sum_acc + acc
print("")
if current_step % FLAGS.checkpoint_every == 0:
if sum_acc >= max_validation_acc:
max_validation_acc = sum_acc
saver.save(sess, checkpoint_prefix, global_step=current_step)
tf.train.write_graph(sess.graph.as_graph_def(), checkpoint_prefix, "graph"+str(nn)+".pb", as_text=False)
print("Saved model {} with sum_accuracy={} checkpoint to {}\n".format(nn, max_validation_acc, checkpoint_prefix))