forked from aalhour/C-Sharp-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DirectedWeightedDenseGraph.cs
361 lines (293 loc) · 12 KB
/
DirectedWeightedDenseGraph.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/***
* The Directed Weighted Dense Graph Data Structure.
*
* Definition:
* A dense graph is a graph G = (V, E) in which |E| = O(|V|^2).
* A directed graph is a graph where each edge follow one direction only between any two vertices.
* A weighted graph is a graph where each edge has a weight (zero weights mean there is no edge).
*
* An adjacency-matrix (two dimensional array of longs) weighted digraph representation.
* Inherits and extends the Directed Dense verion (DirectedDenseGraph<T> class).
* Implements the IWeightedGraph<T> interface.
*/
using System;
using System.Collections.Generic;
using DataStructures.Common;
using DataStructures.Lists;
namespace DataStructures.Graphs
{
/// <summary>
/// This class represents the graph as an adjacency-matrix (two dimensional integer array).
/// </summary>
public class DirectedWeightedDenseGraph<T> : DirectedDenseGraph<T>, IWeightedGraph<T> where T : IComparable<T>
{
/// <summary>
/// INSTANCE VARIABLES
/// </summary>
private const long EMPTY_EDGE_SLOT = 0;
private const object EMPTY_VERTEX_SLOT = (object)null;
// Store edges and their weights as integers.
// Any edge with a value of zero means it doesn't exist. Otherwise, it exist with a specific weight value.
// Default value for positive edges is 1.
protected new long[,] _adjacencyMatrix { get; set; }
/// <summary>
/// CONSTRUCTOR
/// </summary>
public DirectedWeightedDenseGraph(uint capacity = 10)
{
_edgesCount = 0;
_verticesCount = 0;
_verticesCapacity = (int)capacity;
_vertices = new ArrayList<object>(_verticesCapacity);
_adjacencyMatrix = new long[_verticesCapacity, _verticesCapacity];
_adjacencyMatrix.Populate(rows: _verticesCapacity, columns: _verticesCapacity, defaultValue: EMPTY_EDGE_SLOT);
}
/// <summary>
/// Helper function. Checks if edge exist in graph.
/// </summary>
protected override bool _doesEdgeExist(int source, int destination)
{
return (_adjacencyMatrix[source, destination] != EMPTY_EDGE_SLOT);
}
/// <summary>
/// Helper function. Gets the weight of a directed edge.
/// </summary>
private long _getEdgeWeight(int source, int destination)
{
return _adjacencyMatrix[source, destination];
}
/// <summary>
/// Returns true, if graph is weighted; false otherwise.
/// </summary>
public override bool IsWeighted
{
get { return true; }
}
/// <summary>
/// An enumerable collection of all weighted directed edges in graph.
/// </summary>
public virtual IEnumerable<WeightedEdge<T>> Edges
{
get
{
foreach (var vertex in _vertices)
foreach (var outgoingEdge in OutgoingEdges((T)vertex))
yield return outgoingEdge;
}
}
/// <summary>
/// Get all incoming unweighted edges to a vertex.
/// </summary>
public virtual IEnumerable<WeightedEdge<T>> IncomingEdges(T vertex)
{
if (!HasVertex(vertex))
throw new KeyNotFoundException("Vertex doesn't belong to graph.");
int source = _vertices.IndexOf(vertex);
for (int adjacent = 0; adjacent < _vertices.Count; ++adjacent)
{
if (_vertices[adjacent] != null && _doesEdgeExist(adjacent, source))
{
yield return (new WeightedEdge<T>(
(T)_vertices[adjacent], // from
vertex, // to
_getEdgeWeight(source, adjacent) // weight
));
}
}//end-for
}
/// <summary>
/// Get all outgoing unweighted edges from a vertex.
/// </summary>
public virtual IEnumerable<WeightedEdge<T>> OutgoingEdges(T vertex)
{
if (!HasVertex(vertex))
throw new KeyNotFoundException("Vertex doesn't belong to graph.");
int source = _vertices.IndexOf(vertex);
for (int adjacent = 0; adjacent < _vertices.Count; ++adjacent)
{
if (_vertices[adjacent] != null && _doesEdgeExist(source, adjacent))
{
yield return (new WeightedEdge<T>(
vertex, // from
(T)_vertices[adjacent], // to
_getEdgeWeight(source, adjacent) // weight
));
}
}//end-for
}
/// <summary>
/// Obsolete. Another AddEdge function is implemented with a weight parameter.
/// </summary>
[Obsolete("Use the AddEdge method with the weight parameter.")]
public new bool AddEdge(T source, T destination)
{
throw new NotImplementedException();
}
/// <summary>
/// Connects two vertices together with a weight, in the direction: first->second.
/// </summary>
public virtual bool AddEdge(T source, T destination, long weight)
{
// Return if the weight is equals to the empty edge value
if (weight == EMPTY_EDGE_SLOT)
return false;
// Get indices of vertices
int srcIndex = _vertices.IndexOf(source);
int dstIndex = _vertices.IndexOf(destination);
// Check existence of vertices and non-existence of edge
if (srcIndex == -1 || dstIndex == -1)
return false;
else if (_doesEdgeExist(srcIndex, dstIndex))
return false;
_adjacencyMatrix[srcIndex, dstIndex] = weight;
// Increment edges count
++_edgesCount;
return true;
}
/// <summary>
/// Removes edge, if exists, from source to destination.
/// </summary>
public override bool RemoveEdge(T source, T destination)
{
// Get indices of vertices
int srcIndex = _vertices.IndexOf(source);
int dstIndex = _vertices.IndexOf(destination);
// Check existence of vertices and non-existence of edge
if (srcIndex == -1 || dstIndex == -1)
return false;
else if (!_doesEdgeExist(srcIndex, dstIndex))
return false;
_adjacencyMatrix[srcIndex, dstIndex] = EMPTY_EDGE_SLOT;
// Increment edges count
--_edgesCount;
return true;
}
/// <summary>
/// Updates the edge weight from source to destination.
/// </summary>
public virtual bool UpdateEdgeWeight(T source, T destination, long weight)
{
// Return if the weight is equals to the empty edge value
if (weight == EMPTY_EDGE_SLOT)
return false;
// Get indices of vertices
int srcIndex = _vertices.IndexOf(source);
int dstIndex = _vertices.IndexOf(destination);
// Check existence of vertices and non-existence of edge
if (srcIndex == -1 || dstIndex == -1)
return false;
else if (!_doesEdgeExist(srcIndex, dstIndex))
return false;
_adjacencyMatrix[srcIndex, dstIndex] = weight;
return true;
}
/// <summary>
/// Removes the specified vertex from graph.
/// </summary>
public override bool RemoveVertex(T vertex)
{
// Return if graph is empty
if (_verticesCount == 0)
return false;
// Get index of vertex
int index = _vertices.IndexOf(vertex);
// Return if vertex doesn't exists
if (index == -1)
return false;
// Lazy-delete the vertex from graph
//_vertices.Remove (vertex);
_vertices[index] = EMPTY_VERTEX_SLOT;
// Decrement the vertices count
--_verticesCount;
// Remove all outgoing and incoming edges to this vertex
for (int i = 0; i < _verticesCapacity; ++i)
{
// Outgoing edge
if (_doesEdgeExist(index, i))
{
_adjacencyMatrix[index, i] = EMPTY_EDGE_SLOT;
// Decrement the edges count
--_edgesCount;
}
// Incoming edge
if (_doesEdgeExist(i, index))
{
_adjacencyMatrix[i, index] = EMPTY_EDGE_SLOT;
// Decrement the edges count
--_edgesCount;
}
}
return true;
}
/// <summary>
/// Get edge object from source to destination.
/// </summary>
public virtual WeightedEdge<T> GetEdge(T source, T destination)
{
// Get indices of vertices
int srcIndex = _vertices.IndexOf(source);
int dstIndex = _vertices.IndexOf(destination);
// Check the existence of vertices and the directed edge
if (srcIndex == -1 || dstIndex == -1)
throw new Exception("One of the vertices or both of them doesn't exist.");
else if (!_doesEdgeExist(srcIndex, dstIndex))
throw new Exception("Edge doesn't exist.");
return (new WeightedEdge<T>(source, destination, _getEdgeWeight(srcIndex, dstIndex)));
}
/// <summary>
/// Returns the edge weight from source to destination.
/// </summary>
public virtual long GetEdgeWeight(T source, T destination)
{
return GetEdge(source, destination).Weight;
}
/// <summary>
/// Returns the neighbours of a vertex as a dictionary of nodes-to-weights.
/// </summary>
public virtual Dictionary<T, long> NeighboursMap(T vertex)
{
if (!HasVertex(vertex))
return null;
var neighbors = new Dictionary<T, long>();
int source = _vertices.IndexOf(vertex);
// Check existence of vertex
if (source != -1)
for (int adjacent = 0; adjacent < _vertices.Count; ++adjacent)
if (_vertices[adjacent] != null && _doesEdgeExist(source, adjacent))
neighbors.Add((T)_vertices[adjacent], _getEdgeWeight(source, adjacent));
return neighbors;
}
/// <summary>
/// Returns a human-readable string of the graph.
/// </summary>
public override string ToReadable()
{
string output = string.Empty;
for (int i = 0; i < _vertices.Count; ++i)
{
if (_vertices[i] == null)
continue;
var node = (T)_vertices[i];
var adjacents = string.Empty;
output = String.Format("{0}\r\n{1}: [", output, node);
foreach (var adjacentNode in NeighboursMap(node))
adjacents = String.Format("{0}{1}({2}), ", adjacents, adjacentNode.Key, adjacentNode.Value);
if (adjacents.Length > 0)
adjacents = adjacents.TrimEnd(new char[] { ',', ' ' });
output = String.Format("{0}{1}]", output, adjacents);
}
return output;
}
/// <summary>
/// Clear this graph.
/// </summary>
public override void Clear()
{
_edgesCount = 0;
_verticesCount = 0;
_vertices = new ArrayList<object>(_verticesCapacity);
_adjacencyMatrix = new long[_verticesCapacity, _verticesCapacity];
_adjacencyMatrix.Populate(rows: _verticesCapacity, columns: _verticesCapacity, defaultValue: EMPTY_EDGE_SLOT);
}
}
}