-
Notifications
You must be signed in to change notification settings - Fork 0
/
faces.py
56 lines (44 loc) · 1.58 KB
/
faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import cv2
import pickle
recognizer = cv2.face.LBPHFaceRecognizer_create()
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
eye_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_eye.xml')
recognizer.read("trainer.yml")
labels = {}
with open("labels.pkl",'rb') as f:
og_labels = pickle.load(f)
labels = {v:k for k,v in og_labels.items()}
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5)
for(x,y,w,h) in faces:
#print(x,y,w,h)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
id_, conf = recognizer.predict(roi_gray)
if conf>=4 and conf<=85:
print(id_)
print(labels[id_])
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]
color = (255,255,255)
stroke = 2
cv2.putText(frame, name, (x,y), font, 1, color, stroke, cv2.LINE_AA)
img_item = "7.png"
cv2.imwrite(img_item, roi_gray)
color = (255, 0, 0)
stroke = 2
width = x + w
height = y + h
cv2.rectangle(frame, (x, y), (width, height), color, stroke)
eyes = eye_cascade.detectMultiScale(roi_gray)
for(ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex,ey),(ex+ew, ey+eh),(0,255,0),2)
cv2.imshow('frame',frame)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()