-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·431 lines (358 loc) · 19.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python
"""Train the Speech2Text network."""
__author__ = 'Erdene-Ochir Tuguldur'
import os
import json
import time
import argparse
from tqdm import *
import apex
from apex.parallel import DistributedDataParallel
from apex import amp
import albumentations as album
import torch
from torch.utils.data import DataLoader, Subset, ConcatDataset
from tensorboardX import SummaryWriter
# project imports
from datasets import *
from models import *
from utils import get_last_checkpoint_file_name, load_checkpoint, save_checkpoint
from misc.optimizers import AdamW, Novograd
from misc.lr_policies import noam_v1, cosine_annealing
from decoder import GreedyDecoder
torch.cuda.set_device(2)
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", choices=['librispeech', 'mbspeech', 'bolorspeech', 'kazakh20h', 'aihub'],
default='bolorspeech', help='dataset name')
parser.add_argument("--comment", type=str, default='', help='comment in tensorboard title')
parser.add_argument("--logdir", type=str, default='logdir', help='log dir for tensorboard logs and checkpoints')
parser.add_argument("--train-batch-size", type=int, default=44, help='train batch size')
parser.add_argument("--valid-batch-size", type=int, default=22, help='valid batch size')
parser.add_argument("--dataload-workers-nums", type=int, default=4, help='number of workers for dataloader')
parser.add_argument("--weight-decay", type=float, default=1e-5, help='weight decay')
parser.add_argument("--optim", choices=['sgd', 'adamw', 'novograd'], default='sgd',
help='choices of optimization algorithms')
parser.add_argument("--clip-grad-norm", type=int, default=100, help='clip gradient norm value')
parser.add_argument("--model", choices=['crnn', 'quartznet5x5', 'quartznet10x5', 'quartznet15x5'], default='crnn',
help='choices of neural network')
parser.add_argument("--lr", type=float, default=5e-3, help='learning rate for optimization')
parser.add_argument("--min-lr", type=float, default=1e-5, help='minimal learning rate for optimization')
parser.add_argument("--warm-start", type=str, help='warm start from a checkpoint')
parser.add_argument("--lr-warmup-steps", type=int, default=2000, help='learning rate warmup steps')
parser.add_argument("--lr-policy", choices=['noam', 'cosine', 'none'], default='noam',
help='learning rate scheduling policy')
parser.add_argument('--mixed-precision', action='store_true', help='enable mixed precision training')
parser.add_argument('--sync-bn', action='store_true', help='enable apex sync batch norm.')
parser.add_argument('--warpctc', action='store_true', help='use SeanNaren/warp-ctc instead of torch.nn.CTCLoss')
parser.add_argument('--cudnn-benchmark', action='store_true', help='enable CUDNN benchmark')
parser.add_argument('--mix-batch', action='store_true', help='mix batch to simulate background sound')
parser.add_argument("--max-epochs", default=300, type=int, help="train epochs")
parser.add_argument("--normalize", choices=['all_features', 'per_feature'], default='all_features',
help="feature normalization")
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--freeze", default=0, type=int, help="freeze first n encoder layers of QuartzNet")
args = parser.parse_args()
args.distributed = False
args.world_size = 1
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.world_size = int(os.environ['WORLD_SIZE'])
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
torch.backends.cudnn.benchmark = args.cudnn_benchmark
num_features = 64
eps = 2 ** -24
if args.model == 'crnn':
# CRNN supports only 32 features
num_features = 32
eps = 1e-20
train_transform = Compose([LoadMagSpectrogram(),
AddNoiseToMagSpectrogram(noise=ColoredNoiseDataset(), probability=0.5),
ShiftSpectrogramAlongFrequencyAxis(frequency_shift_max_percentage=0.1, probability=0.7),
ComputeMelSpectrogramFromMagSpectrogram(num_features=num_features,
normalize=args.normalize, eps=eps),
ApplyAlbumentations(album.Compose([
# album.OneOf([album.Blur(blur_limit=3),
# album.MedianBlur(blur_limit=3)]), # sometimes hurts, sometimes OK
album.Cutout(num_holes=10) # dataset dependent, longer audios more cutout
], p=1)),
TimeScaleSpectrogram(max_scale=0.1, probability=0.5), # only tiny effect
MaskSpectrogram(frequency_mask_max_percentage=0.3,
time_mask_max_percentage=0.1,
probability=1),
ShiftSpectrogramAlongTimeAxis(time_shift_max_percentage=0.05, probability=0.7),
])
valid_transform = Compose([LoadMagSpectrogram(),
ComputeMelSpectrogramFromMagSpectrogram(num_features=num_features,
normalize=args.normalize, eps=eps)])
if args.dataset == 'librispeech':
from datasets.libri_speech import LibriSpeech as SpeechDataset, vocab
max_duration = 16.7
train_dataset = ConcatDataset([
SpeechDataset(name='train-clean-100', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='train-clean-360', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='train-other-500', max_duration=max_duration, transform=train_transform),
ColoredNoiseDataset(size=5000, transform=train_transform),
BackgroundSounds(size=1000, transform=train_transform)
])
valid_dataset = SpeechDataset(name='dev-clean', transform=valid_transform)
elif args.dataset == 'bolorspeech':
from datasets.bolor_speech import BolorSpeech as SpeechDataset, vocab
max_duration = 16.7
train_dataset = ConcatDataset([
SpeechDataset(name='train', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='train2', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='annotation', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='annotation-1111', max_duration=max_duration, transform=train_transform),
SpeechDataset(name='demo', max_duration=max_duration, transform=train_transform),
ColoredNoiseDataset(size=5000, transform=train_transform),
BackgroundSounds(size=1000, transform=train_transform)
])
valid_dataset = SpeechDataset(name='test', transform=valid_transform)
elif args.dataset == 'kazakh20h':
from datasets.kazakh20h_speech import Kazakh20hSpeech as SpeechDataset, vocab
max_duration = 16.7
train_dataset = ConcatDataset([
SpeechDataset(name='train', max_duration=max_duration, transform=train_transform),
ColoredNoiseDataset(size=100, transform=train_transform)
# BackgroundSounds(size=100, transform=train_transform)
])
valid_dataset = SpeechDataset(name='test', transform=valid_transform)
elif args.dataset == 'aihub':
from datasets.aihub_speech import AihubSpeech as SpeechDataset, vocab
max_duration = None
train_dataset = ConcatDataset([
SpeechDataset(name='train', max_duration=max_duration, transform=train_transform),
ColoredNoiseDataset(size=100, transform=train_transform)
# BackgroundSounds(size=100, transform=train_transform)
])
valid_dataset = SpeechDataset(name='test', transform=valid_transform)
elif args.dataset == 'uaihub':
from datasets.uaihub_speech import AihubSpeech as SpeechDataset, vocab
max_duration = None
train_dataset = ConcatDataset([
SpeechDataset(name='train', max_duration=max_duration, transform=train_transform),
ColoredNoiseDataset(size=100, transform=train_transform)
# BackgroundSounds(size=100, transform=train_transform)
])
valid_dataset = SpeechDataset(name='test', transform=valid_transform)
else:
from datasets.mb_speech import MBSpeech as SpeechDataset, vocab
# only 1 voice, so use much simpler train transform
train_transform = Compose([LoadMagSpectrogram(),
ComputeMelSpectrogramFromMagSpectrogram(num_features=num_features,
normalize=args.normalize, eps=eps),
ApplyAlbumentations(album.Compose([album.Cutout(num_holes=8)], p=1)),
TimeScaleSpectrogram(max_scale=0.1, probability=0.5),
MaskSpectrogram(frequency_mask_max_percentage=0.3,
time_mask_max_percentage=0.1,
probability=0.5)])
train_dataset = SpeechDataset(transform=train_transform)
valid_dataset = SpeechDataset(transform=valid_transform)
indices = list(range(len(train_dataset)))
train_dataset = Subset(train_dataset, indices[:-args.valid_batch_size])
valid_dataset = Subset(valid_dataset, indices[-args.valid_batch_size:])
train_data_sampler, valid_data_sampler = None, None
if args.distributed:
train_data_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
valid_data_sampler = torch.utils.data.distributed.DistributedSampler(valid_dataset)
train_data_loader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=(train_data_sampler is None),
collate_fn=collate_fn, num_workers=args.dataload_workers_nums,
sampler=train_data_sampler)
valid_data_loader = DataLoader(valid_dataset, batch_size=args.valid_batch_size, shuffle=False,
collate_fn=collate_fn, num_workers=args.dataload_workers_nums,
sampler=None)
if args.model == 'quartznet5x5':
model = QuartzNet5x5(vocab=vocab, num_features=num_features)
elif args.model == 'quartznet10x5':
model = QuartzNet10x5(vocab=vocab, num_features=num_features)
elif args.model == 'quartznet15x5':
model = QuartzNet15x5(vocab=vocab, num_features=num_features)
# model.load_nvidia_nemo_weights('quartznet15x5/JasperEncoder-STEP-243800.pt', None)
else:
model = Speech2TextCRNN(vocab)
if args.warm_start:
load_checkpoint(args.warm_start, model, optimizer=None, use_gpu=False, remove_module_keys=True)
if args.sync_bn:
model = apex.parallel.convert_syncbn_model(model)
model = model.cuda()
if args.warpctc:
from warpctc_pytorch import CTCLoss
criterion = CTCLoss(blank=0, size_average=False, length_average=False)
else:
from torch.nn import CTCLoss
criterion = CTCLoss(blank=0, reduction='sum', zero_infinity=True)
decoder = GreedyDecoder(labels=vocab)
# freeze first n encoder layers of QuartzNet
if args.freeze != 0:
# TODO: check whether the model is QuartzNet
idx = 0
for idx, parameter in enumerate(model.encoder[:args.freeze].parameters()):
parameter.requires_grad = False
if args.local_rank == 0:
print("freezing %i n layers of total %i encoder layers" % (idx + 1, len(model.encoder)))
if args.optim == 'sgd':
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optim == 'novograd':
optimizer = Novograd(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr, weight_decay=args.weight_decay, betas=(0.95, 0.5))
else:
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay)
total_steps = int(len(train_dataset) * args.max_epochs / (args.world_size * args.train_batch_size))
if args.local_rank == 0:
print("total steps:", total_steps, " epoch steps:", int(total_steps/args.max_epochs))
if args.lr_policy == 'cosine':
lr_policy = cosine_annealing
elif args.lr_policy == 'noam':
lr_policy = noam_v1
else:
lr_policy = None
if args.mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O2')
if args.distributed:
model = DistributedDataParallel(model)
start_timestamp = int(time.time() * 1000)
start_epoch = 0
global_step = 0
logname = "%s_%s_%s_wd%.0e" % (args.dataset, args.model, args.optim, args.weight_decay)
if args.comment:
logname = "%s_%s" % (logname, args.comment.replace(' ', '_'))
logdir = os.path.join(args.logdir, logname)
writer = SummaryWriter(log_dir=logdir)
if args.local_rank == 0:
print(vars(args))
writer.add_text("hparams", json.dumps(vars(args), indent=4))
# load the last checkpoint if exists
last_checkpoint_file_name = get_last_checkpoint_file_name(logdir)
if last_checkpoint_file_name:
print("loading the last checkpoint: %s" % last_checkpoint_file_name)
start_epoch, global_step = load_checkpoint(last_checkpoint_file_name, model, optimizer, use_gpu=True)
def get_lr():
return optimizer.param_groups[0]['lr']
def lr_decay(step, epoch):
if lr_policy is not None:
new_lr = lr_policy(args.lr, step, epoch, args.min_lr, args.lr_warmup_steps, total_steps)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
def set_lr(lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
#set_lr(1e-4)
def train(epoch, phase='train'):
global global_step
lr_decay(global_step, epoch)
if args.local_rank == 0:
print("epoch %3d with lr=%.02e" % (epoch, get_lr()))
if args.distributed:
train_data_sampler.set_epoch(epoch)
model.train() if phase == 'train' else model.eval()
torch.set_grad_enabled(True) if phase == 'train' else torch.set_grad_enabled(False)
data_loader = train_data_loader if phase == 'train' else valid_data_loader
it = 0
running_loss = 0.0
total_cer, total_wer = 0, 0
pbar = None
if args.local_rank == 0:
batch_size = args.train_batch_size if phase == 'train' else args.valid_batch_size
pbar = tqdm(data_loader, unit="audios", unit_scale=batch_size)
for batch in data_loader if pbar is None else pbar:
inputs, targets = batch['input'], batch['target']
inputs_length, targets_length = batch['input_length'], batch['target_length']
# warpctc wants Int instead of Long
targets = targets.int() if args.warpctc else targets.long()
inputs_length = inputs_length.int() if args.warpctc else inputs_length.long()
targets_length = targets_length.int() if args.warpctc else targets_length.long()
B, n_feature, T = inputs.size() # number of feature bins and time
_, N = targets.size() # batch size and text count
if args.mix_batch:
# poor man's mixup
index = np.random.permutation(B)
inputs = inputs + random.uniform(0.05, 0.2) * inputs[index]
# inputs: BxCxT
if args.model == 'crnn':
outputs = model(inputs.cuda())
inputs_length = inputs_length // 2 + 2
else:
outputs, inputs_length = model(inputs.cuda(), inputs_length.cuda())
# BxCxT -> TxBxC
outputs = outputs.permute(2, 0, 1)
# train on full batch length -> better for detecting silence?
# inputs_length[:] = outputs.size(0)
if args.warpctc:
# warpctc wants one dimensional vector without blank elements
targets_1d = targets.view(-1)
targets_1d = targets_1d[targets_1d.nonzero().squeeze()]
# warpctc wants targets, inputs_length, targets_length on CPU -> don't need to convert to CUDA
loss = criterion(outputs.cpu(), targets_1d.cpu(), inputs_length.cpu(), targets_length.cpu())
else:
# nn.CTCLoss wants log softmax with TxBxC
loss = criterion(outputs.log_softmax(dim=2), targets.cuda(), inputs_length.cuda(), targets_length.cuda())
loss = loss / B
if phase == 'train':
lr_decay(global_step, epoch)
optimizer.zero_grad()
if args.mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.clip_grad_norm > 0:
# clip gradient
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.clip_grad_norm)
optimizer.step()
# global step size is increased only in the train phase
global_step += 1
it += 1
loss = loss.item()
running_loss += loss
if args.local_rank == 0:
if global_step % 10 == 0:
if phase == 'train':
writer.add_scalar('%s/loss' % phase, loss, global_step)
writer.add_scalar('%s/learning_rate' % phase, get_lr(), global_step)
if phase == 'train' and global_step % 1000 == 1 or phase == 'valid':
with torch.no_grad():
target_strings = decoder.convert_to_strings(targets)
decoded_output, _ = decoder.decode(outputs.softmax(dim=2).permute(1, 0, 2))
writer.add_text('%s/prediction' % phase,
'truth: %s\npredicted: %s' % (target_strings[0][0], decoded_output[0][0]),
global_step if phase == 'train' else global_step + it)
if phase == 'valid':
cer, wer = 0, 0
for x in range(len(target_strings)):
transcript, reference = decoded_output[x][0], target_strings[x][0]
cer += decoder.cer(transcript, reference) / float(len(reference))
wer += decoder.wer(transcript, reference) / float(len(reference.split()))
total_cer += cer
total_wer += wer
# update the progress bar
pbar.set_postfix({
'loss': "%.05f" % (running_loss / it)
})
epoch_loss = running_loss / it
if args.local_rank == 0:
writer.add_scalar('%s/epoch_loss' % phase, epoch_loss, epoch)
if phase == 'valid':
valid_dataset_length = len(valid_dataset)
writer.add_scalar('%s/epoch_cer' % phase, (total_cer / valid_dataset_length) * 100, epoch)
writer.add_scalar('%s/epoch_wer' % phase, (total_wer / valid_dataset_length) * 100, epoch)
print('%s/epoch_wer' % phase, (total_wer / valid_dataset_length) * 100)
save_checkpoint(logdir, epoch, global_step, model, optimizer)
return epoch_loss
since = time.time()
epoch = start_epoch
while True:
train_epoch_loss = train(epoch, phase='train')
if args.local_rank == 0:
time_elapsed = time.time() - since
time_str = 'total time elapsed: {:.0f}h {:.0f}m {:.0f}s '.format(time_elapsed // 3600,
time_elapsed % 3600 // 60,
time_elapsed % 60)
print("train epoch loss %f, step=%d, %s" % (train_epoch_loss, global_step, time_str))
valid_epoch_loss = train(epoch, phase='valid')
print("valid epoch loss %f" % valid_epoch_loss)
epoch += 1
if epoch > args.max_epochs:
break