forked from shicai/caffe-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnin.py
138 lines (113 loc) · 7.63 KB
/
nin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from caffe import layers as L
from caffe import params as P
import caffe
def conv_relu(bottom, num_output=64, kernel_size=3, stride=1, pad=0):
conv = L.Convolution(bottom, num_output=num_output, kernel_size=kernel_size, stride=stride, pad=pad,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0))
relu = L.ReLU(conv, in_place=True)
return conv, relu
def fc_relu_drop(bottom, fc_num_output=4096, dropout_ratio=0.5):
fc = L.InnerProduct(bottom, num_output=fc_num_output,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
relu = L.ReLU(fc, in_place=True)
drop = L.Dropout(fc, in_place=True, dropout_param=dict(dropout_ratio=dropout_ratio))
return fc, relu, drop
def conv_bn_scale_relu(bottom, num_output=64, kernel_size=3, stride=1, pad=0):
conv = L.Convolution(bottom, num_output=num_output, kernel_size=kernel_size, stride=stride, pad=pad,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0))
bn = L.BatchNorm(conv, use_global_stats=False, in_place=True)
scale = L.Scale(conv, scale_param=dict(bias_term=True), in_place=True)
relu = L.ReLU(conv, in_place=True)
return conv, bn, scale, relu
def accuracy_top1_top5(bottom, label):
accuracy_top1 = L.Accuracy(bottom, label, include=dict(phase=1))
accuracy_top5 = L.Accuracy(bottom, label, include=dict(phase=1), accuracy_param=dict(top_k=5))
return accuracy_top1, accuracy_top5
class NIN(object):
def __init__(self, lmdb_train, lmdb_test, num_output):
self.train_data = lmdb_train
self.test_data = lmdb_test
self.classifier_num = num_output
def nin_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=224, mean_value=[104, 117, 123], mirror=mirror))
n.conv1, n.relu0 = conv_relu(n.data, num_output=96, kernel_size=11, stride=4) # 96x53x53
n.cccp1, n.relu1 = conv_relu(n.conv1, num_output=96, kernel_size=1, stride=1)
n.cccp2, n.relu2 = conv_relu(n.cccp1, num_output=96, kernel_size=1, stride=1)
n.pool1 = L.Pooling(n.cccp2, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 96x26x26
n.conv2, n.relu3 = conv_relu(n.pool1, num_output=256, kernel_size=5, stride=1, pad=2) # 256x26x26
n.cccp3, n.relu4 = conv_relu(n.conv2, num_output=256, kernel_size=1, stride=1)
n.cccp4, n.relu5 = conv_relu(n.cccp3, num_output=256, kernel_size=1, stride=1)
n.pool2 = L.Pooling(n.cccp4, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 256x13x13
n.conv3, n.relu6 = conv_relu(n.pool2, num_output=384, kernel_size=3, stride=1, pad=1) # 384x13x13
n.cccp5, n.relu7 = conv_relu(n.conv3, num_output=384, kernel_size=1, stride=1)
n.cccp6, n.relu8 = conv_relu(n.cccp5, num_output=384, kernel_size=1, stride=1)
n.pool3 = L.Pooling(n.cccp6, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 384x6x6
n.drop7 = L.Dropout(n.pool3, in_place=True, dropout_param=dict(dropout_ratio=0.5))
n.conv4, n.relu9 = conv_relu(n.pool3, num_output=1024, kernel_size=3, stride=1, pad=1) # 1024x6x6
n.cccp7, n.relu10 = conv_relu(n.conv4, num_output=1024, kernel_size=1, stride=1)
n.cccp8, n.relu11 = conv_relu(n.cccp7, num_output=1024, kernel_size=1, stride=1)
n.pool4 = L.Pooling(n.cccp8, pool=P.Pooling.AVE, kernel_size=6, stride=1) # 1024x1x1
n.classifier = L.InnerProduct(n.pool4, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.classifier, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.pool4, n.label)
return n.to_proto()
def nin_bn_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=227, mean_value=[104, 117, 123], mirror=mirror))
n.conv1, n.bn0, n.scale0, n.relu0 = conv_bn_scale_relu(n.data, num_output=96, kernel_size=11, stride=4)
n.cccp1, n.bn1, n.scale1, n.relu1 = conv_bn_scale_relu(n.conv1, num_output=96, kernel_size=1, stride=1)
n.cccp2, n.bn2, n.scale2, n.relu2 = conv_bn_scale_relu(n.cccp1, num_output=96, kernel_size=1, stride=1)
n.pool1 = L.Pooling(n.cccp2, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 96x26x26
n.conv2, n.bn3, n.scale3, n.relu3 = conv_bn_scale_relu(n.pool1, num_output=256, kernel_size=5, stride=1, pad=2)
n.cccp3, n.bn4, n.scale4, n.relu4 = conv_bn_scale_relu(n.conv2, num_output=256, kernel_size=1, stride=1)
n.cccp4, n.bn5, n.scale5, n.relu5 = conv_bn_scale_relu(n.cccp3, num_output=256, kernel_size=1, stride=1)
n.pool2 = L.Pooling(n.cccp4, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 256x13x13
n.conv3, n.bn6, n.scale6, n.relu6 = conv_bn_scale_relu(n.pool2, num_output=384, kernel_size=3, stride=1, pad=1)
n.cccp5, n.bn7, n.scale7, n.relu7 = conv_bn_scale_relu(n.conv3, num_output=384, kernel_size=1, stride=1)
n.cccp6, n.bn8, n.scale8, n.relu8 = conv_bn_scale_relu(n.cccp5, num_output=384, kernel_size=1, stride=1)
n.pool3 = L.Pooling(n.cccp6, pool=P.Pooling.MAX, kernel_size=3, stride=2) # 384x6x6
n.drop7 = L.Dropout(n.pool3, in_place=True, dropout_param=dict(dropout_ratio=0.5))
n.conv4, n.bn9, n.scale9, n.relu9 = conv_bn_scale_relu(n.pool3, num_output=1024, kernel_size=3, stride=1, pad=1)
n.cccp7, n.bn10, n.scale10, n.relu10 = conv_bn_scale_relu(n.conv4, num_output=1024, kernel_size=1, stride=1)
n.cccp8, n.bn11, n.scale11, n.relu11 = conv_bn_scale_relu(n.cccp7, num_output=1024, kernel_size=1, stride=1)
n.pool4 = L.Pooling(n.cccp8, pool=P.Pooling.AVE, kernel_size=6, stride=1) # 1024x1x1
n.classifier = L.InnerProduct(n.pool4, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.classifier, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.pool4, n.label)
return n.to_proto()