forked from shicai/caffe-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvggnet.py
252 lines (207 loc) · 13.4 KB
/
vggnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from caffe import layers as L
from caffe import params as P
import caffe
def conv_relu(bottom, num_output=64, kernel_size=3, stride=1, pad=1):
conv = L.Convolution(bottom, num_output=num_output, kernel_size=kernel_size, stride=stride, pad=pad,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0))
relu = L.ReLU(conv, in_place=True)
return conv, relu
def fc_relu_drop(bottom, fc_num_output=4096, dropout_ratio=0.5):
fc = L.InnerProduct(bottom, num_output=fc_num_output,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
relu = L.ReLU(fc, in_place=True)
drop = L.Dropout(fc, in_place=True, dropout_param=dict(dropout_ratio=dropout_ratio))
return fc, relu, drop
def conv_bn_scale_relu(bottom, num_output=64, kernel_size=3, stride=1, pad=1):
conv = L.Convolution(bottom, num_output=num_output, kernel_size=kernel_size, stride=stride, pad=pad,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0))
bn = L.BatchNorm(conv, use_global_stats=False, in_place=True)
scale = L.Scale(conv, scale_param=dict(bias_term=True), in_place=True)
relu = L.ReLU(conv, in_place=True)
return conv, bn, scale, relu
def accuracy_top1_top5(bottom, label):
accuracy_top1 = L.Accuracy(bottom, label, include=dict(phase=1))
accuracy_top5 = L.Accuracy(bottom, label, include=dict(phase=1), accuracy_param=dict(top_k=5))
return accuracy_top1, accuracy_top5
class VggNet(object):
def __init__(self, lmdb_train, lmdb_test, num_output):
self.train_data = lmdb_train
self.test_data = lmdb_test
self.classifier_num = num_output
def vgg_16_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=224, mean_value=[104, 117, 123], mirror=mirror))
n.conv1_1, n.relu1_1 = conv_relu(n.data, num_output=64)
n.conv1_2, n.relu1_2 = conv_relu(n.conv1_1, num_output=64)
n.pool1 = L.Pooling(n.conv1_2, pool=P.Pooling.MAX, kernel_size=2, stride=2) # 64x112x112
n.conv2_1, n.relu2_1 = conv_relu(n.pool1, num_output=128)
n.conv2_2, n.relu2_2 = conv_relu(n.conv2_1, num_output=128)
n.pool2 = L.Pooling(n.conv2_2, pool=P.Pooling.MAX, kernel_size=2, stride=2) # 128x56x56
n.conv3_1, n.relu3_1 = conv_relu(n.pool2, num_output=256)
n.conv3_2, n.relu3_2 = conv_relu(n.conv3_1, num_output=256)
n.conv3_3, n.relu3_3 = conv_relu(n.conv3_2, num_output=256)
n.pool3 = L.Pooling(n.conv3_3, pool=P.Pooling.MAX, kernel_size=2, stride=2) # 256x28x28
n.conv4_1, n.relu4_1 = conv_relu(n.pool3, num_output=512)
n.conv4_2, n.relu4_2 = conv_relu(n.conv4_1, num_output=512)
n.conv4_3, n.relu4_3 = conv_relu(n.conv4_2, num_output=512)
n.pool4 = L.Pooling(n.conv4_3, pool=P.Pooling.MAX, kernel_size=2, stride=2) # 512x14x14
n.conv5_1, n.relu5_1 = conv_relu(n.pool4, num_output=512)
n.conv5_2, n.relu5_2 = conv_relu(n.conv5_1, num_output=512)
n.conv5_3, n.relu5_3 = conv_relu(n.conv5_2, num_output=512)
n.pool5 = L.Pooling(n.conv5_3, pool=P.Pooling.MAX, kernel_size=2, stride=2) # 512x7x7
n.fc6, n.relu6, n.drop6 = fc_relu_drop(n.pool5, fc_num_output=4096, dropout_ratio=0.5)
n.fc7, n.relu7, n.drop7 = fc_relu_drop(n.fc6, fc_num_output=4096, dropout_ratio=0.5)
n.fc8 = L.InnerProduct(n.fc7, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.fc8, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.fc8, n.label)
return n.to_proto()
def vgg_16_bn_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=224, mean_value=[104, 117, 123], mirror=mirror))
n.conv1_1, n.bn1_1, n.scale1_1, n.relu1_1 = conv_bn_scale_relu(n.data, num_output=64)
n.conv1_2, n.bn1_2, n.scale1_2, n.relu1_2 = conv_bn_scale_relu(n.conv1_1, num_output=64)
n.pool1 = L.Pooling(n.conv1_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv2_1, n.bn2_1, n.scale2_1, n.relu2_1 = conv_bn_scale_relu(n.pool1, num_output=128)
n.conv2_2, n.bn2_2, n.scale2_2, n.relu2_2 = conv_bn_scale_relu(n.conv2_1, num_output=128)
n.pool2 = L.Pooling(n.conv2_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv3_1, n.bn3_1, n.scale3_1, n.relu3_1 = conv_bn_scale_relu(n.pool2, num_output=256)
n.conv3_2, n.bn3_2, n.scale3_2, n.relu3_2 = conv_bn_scale_relu(n.conv3_1, num_output=256)
n.conv3_3, n.bn3_3, n.scale3_3, n.relu3_3 = conv_bn_scale_relu(n.conv3_2, num_output=256)
n.pool3 = L.Pooling(n.conv3_3, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv4_1, n.bn4_1, n.scale4_1, n.relu4_1 = conv_bn_scale_relu(n.pool3, num_output=512)
n.conv4_2, n.bn4_2, n.scale4_2, n.relu4_2 = conv_bn_scale_relu(n.conv4_1, num_output=512)
n.conv4_3, n.bn4_3, n.scale4_3, n.relu4_3 = conv_bn_scale_relu(n.conv4_2, num_output=512)
n.pool4 = L.Pooling(n.conv4_3, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv5_1, n.bn5_1, n.scale5_1, n.relu5_1 = conv_bn_scale_relu(n.pool4, num_output=512)
n.conv5_2, n.bn5_2, n.scale5_2, n.relu5_2 = conv_bn_scale_relu(n.conv5_1, num_output=512)
n.conv5_3, n.bn5_3, n.scale5_3, n.relu5_3 = conv_bn_scale_relu(n.conv5_2, num_output=512)
n.pool5 = L.Pooling(n.conv5_3, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.fc6, n.relu6, n.drop6 = fc_relu_drop(n.pool5, fc_num_output=4096, dropout_ratio=0.5)
n.fc7, n.relu7, n.drop7 = fc_relu_drop(n.fc6, fc_num_output=4096, dropout_ratio=0.5)
n.fc8 = L.InnerProduct(n.fc7, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.fc8, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.fc8, n.label)
return n.to_proto()
def vgg_19_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=224, mean_value=[104, 117, 123], mirror=mirror))
n.conv1_1, n.relu1_1 = conv_relu(n.data, num_output=64)
n.conv1_2, n.relu1_2 = conv_relu(n.conv1_1, num_output=64)
n.pool1 = L.Pooling(n.conv1_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv2_1, n.relu2_1 = conv_relu(n.pool1, num_output=128)
n.conv2_2, n.relu2_2 = conv_relu(n.conv2_1, num_output=128)
n.pool2 = L.Pooling(n.conv2_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv3_1, n.relu3_1 = conv_relu(n.pool2, num_output=256)
n.conv3_2, n.relu3_2 = conv_relu(n.conv3_1, num_output=256)
n.conv3_3, n.relu3_3 = conv_relu(n.conv3_2, num_output=256)
n.conv3_4, n.relu3_4 = conv_relu(n.conv3_3, num_output=256)
n.pool3 = L.Pooling(n.conv3_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv4_1, n.relu4_1 = conv_relu(n.pool3, num_output=512)
n.conv4_2, n.relu4_2 = conv_relu(n.conv4_1, num_output=512)
n.conv4_3, n.relu4_3 = conv_relu(n.conv4_2, num_output=512)
n.conv4_4, n.relu4_4 = conv_relu(n.conv4_3, num_output=512)
n.pool4 = L.Pooling(n.conv4_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv5_1, n.relu5_1 = conv_relu(n.pool4, num_output=512)
n.conv5_2, n.relu5_2 = conv_relu(n.conv5_1, num_output=512)
n.conv5_3, n.relu5_3 = conv_relu(n.conv5_2, num_output=512)
n.conv5_4, n.relu5_4 = conv_relu(n.conv5_3, num_output=512)
n.pool5 = L.Pooling(n.conv5_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.fc6, n.relu6, n.drop6 = fc_relu_drop(n.pool5, fc_num_output=4096, dropout_ratio=0.5)
n.fc7, n.relu7, n.drop7 = fc_relu_drop(n.fc6, fc_num_output=4096, dropout_ratio=0.5)
n.fc8 = L.InnerProduct(n.fc7, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.fc8, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.fc8, n.label)
return n.to_proto()
def vgg_19_bn_proto(self, batch_size, phase='TRAIN'):
n = caffe.NetSpec()
if phase == 'TRAIN':
source_data = self.train_data
mirror = True
else:
source_data = self.test_data
mirror = False
n.data, n.label = L.Data(source=source_data, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=224, mean_value=[104, 117, 123], mirror=mirror))
n.conv1_1, n.bn1_1, n.scale1_1, n.relu1_1 = conv_bn_scale_relu(n.data, num_output=64)
n.conv1_2, n.bn1_2, n.scale1_2, n.relu1_2 = conv_bn_scale_relu(n.conv1_1, num_output=64)
n.pool1 = L.Pooling(n.conv1_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv2_1, n.bn2_1, n.scale2_1, n.relu2_1 = conv_bn_scale_relu(n.pool1, num_output=128)
n.conv2_2, n.bn2_2, n.scale2_2, n.relu2_2 = conv_bn_scale_relu(n.conv2_1, num_output=128)
n.pool2 = L.Pooling(n.conv2_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv3_1, n.bn3_1, n.scale3_1, n.relu3_1 = conv_bn_scale_relu(n.pool2, num_output=256)
n.conv3_2, n.bn3_2, n.scale3_2, n.relu3_2 = conv_bn_scale_relu(n.conv3_1, num_output=256)
n.conv3_3, n.bn3_3, n.scale3_3, n.relu3_3 = conv_bn_scale_relu(n.conv3_2, num_output=256)
n.conv3_4, n.bn3_4, n.scale3_4, n.relu3_4 = conv_bn_scale_relu(n.conv3_3, num_output=256)
n.pool3 = L.Pooling(n.conv3_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv4_1, n.bn4_1, n.scale4_1, n.relu4_1 = conv_bn_scale_relu(n.pool3, num_output=512)
n.conv4_2, n.bn4_2, n.scale4_2, n.relu4_2 = conv_bn_scale_relu(n.conv4_1, num_output=512)
n.conv4_3, n.bn4_3, n.scale4_3, n.relu4_3 = conv_bn_scale_relu(n.conv4_2, num_output=512)
n.conv4_4, n.bn4_4, n.scale4_4, n.relu4_4 = conv_bn_scale_relu(n.conv4_3, num_output=512)
n.pool4 = L.Pooling(n.conv4_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.conv5_1, n.bn5_1, n.scale5_1, n.relu5_1 = conv_bn_scale_relu(n.pool4, num_output=512)
n.conv5_2, n.bn5_2, n.scale5_2, n.relu5_2 = conv_bn_scale_relu(n.conv5_1, num_output=512)
n.conv5_3, n.bn5_3, n.scale5_3, n.relu5_3 = conv_bn_scale_relu(n.conv5_2, num_output=512)
n.conv5_4, n.bn5_4, n.scale5_4, n.relu5_4 = conv_bn_scale_relu(n.conv5_3, num_output=512)
n.pool5 = L.Pooling(n.conv5_4, pool=P.Pooling.MAX, kernel_size=2, stride=2)
n.fc6, n.relu6, n.drop6 = fc_relu_drop(n.pool5, fc_num_output=4096, dropout_ratio=0.5)
n.fc7, n.relu7, n.drop7 = fc_relu_drop(n.fc6, fc_num_output=4096, dropout_ratio=0.5)
n.fc8 = L.InnerProduct(n.fc7, num_output=self.classifier_num,
param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)],
weight_filler=dict(type='gaussian', std=0.01),
bias_filler=dict(type='constant', value=0)
)
n.loss = L.SoftmaxWithLoss(n.fc8, n.label)
if phase == 'TRAIN':
pass
else:
n.accuracy_top1, n.accuracy_top5 = accuracy_top1_top5(n.fc8, n.label)
return n.to_proto()