-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path_pkgdown.yml
208 lines (203 loc) · 5.63 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
home:
title: BGGM
links:
- text: Ask a question about BGGM
href: https://groups.google.com/forum/#!forum/bggm-users
url: https://donaldrwilliams.github.io/BGGM/
template:
bootstrap: 5
bootswatch: flatly
opengraph:
image:
src: man/figures/hex.jpg
creator: "@wdonald_1985"
card: summary
navbar:
title: "BGGM"
left:
- text: "Vignettes"
href: articles/index.html
- text: "Functions"
href: reference/index.html
- text: "News"
href: news/index.html
articles:
- title: "Getting Started"
desc: >
These vignettes provide an introduction to the various methods in **BGGM**.
contents:
- test_sum
- netplot
- mcmc_diagnostics
- var_model
- control
- netstat_custom
- ppc_custom
- hyp_3_ways
- predictability
- in_tandem
reference:
- title: "Missing Data"
desc: >
Handle Missing Values.
contents:
- bggm_missing
- impute_data
- title: "Estimation Based Methods"
desc: >
'Estimation' indicates that the methods to not employ Bayes factor testing. Rather,
the graph is determined with the posterior distribution. The prior distribtuion has a
minimal influence.
contents:
- estimate
- coef.estimate
- predict.estimate
- plot.summary.estimate
- select.estimate
- summary.estimate
- title: "Exploratory Hypothesis Testing"
desc: >
Bayes factor testing to determine the graph. 'Exploratory' reflects that there
is not a specific hypothesis being test.
contents:
- explore
- coef.explore
- predict.explore
- plot.summary.explore
- plot.summary.select.explore
- select.explore
- summary.explore
- summary.select.explore
- title: "Confirmatory Hypothesis Testing"
desc: >
Test (in)equality constrained hypotheses with the Bayes factor.
contents:
- confirm
- plot.confirm
- title: "Compare Gaussian Graphical Models"
desc: >
A variety of methods for comparing GGMs.
- subtitle: "Posterior Predictive Check"
desc: >
Compare groups with a posterior predictive check, where the null model
is that the groups are equal. This works with any number of groups. There
is also an option to compare the groups with a user defined test-statistic.
contents:
- ggm_compare_ppc
- plot.ggm_compare_ppc
- subtitle: "Partial Correlation Differences"
desc: >
Pairwise comparisons for each partial correlation in the respective models.
This can be used for any number of groups. There is also an analytical solution.
contents:
- ggm_compare_estimate
- plot.summary.ggm_compare_estimate
- select.ggm_compare_estimate
- summary.ggm_compare_estimate
- subtitle: "Exploratory Hypothesis Testing"
desc: >
Pairwise comparisions with exploratory hypothesis testing. This method can be used to
compare several groups simultaneously.
contents:
- ggm_compare_explore
- plot.summary.ggm_compare_explore
- select.ggm_compare_explore
- summary.ggm_compare_explore
- subtitle: "Confirmatory Hypothesis Testing"
desc: >
Test (in)equality constrained hypotheses with the Bayes factor.
contents:
- ggm_compare_confirm
- plot.confirm
- title: "Predictability"
desc: >
Bayesian variance explained for each node in the model.
contents:
- predictability
- plot.predictability
- summary.predictability
- title: "Network Statistics"
desc: >
Compute network statistics from a partial correlation matrix or a
weighted adjacency matrix.
contents:
- roll_your_own
- plot.roll_your_own
- title: "Partial Correlation Sums"
desc: >
Compute the sum of partial correlations within (one group) or between (two groups) GGMs. This
can be used to compare sums.
contents:
- pcor_sum
- plot.pcor_sum
- title: "Network Plot"
desc: >
Network plot for the selected graphs. This works with all method for which there is
a selected graph.
contents:
- plot.select
- title: "Graphical VAR (vector autoregression)"
desc: >
A variety of methods for time series data. These particular models are VAR(1) models which
are also known as time series chain graphical models.
- subtitle: "Estimation"
desc: >
'Estimation' indicates that the methods to not employ Bayes factor testing. Rather,
the graph is determined with the posterior distribution. The prior distribtuion has a
minimal influence.
contents:
- var_estimate
- select.var_estimate
- summary.var_estimate
- plot.summary.var_estimate
- predict.var_estimate
- title: Miscellaneous
contents:
- convergence
- fisher_z_to_r
- fisher_r_to_z
- gen_ordinal
- pcor_to_cor
- pcor_mat
- plot_prior
- posterior_samples
- map
- regression_summary
- summary.coef
- weighted_adj_mat
- zero_order_cors
- title: "Data"
desc: >
Example datasets and correlation matrices.
contents:
- asd_ocd
- bfi
- csws
- depression_anxiety_t1
- depression_anxiety_t2
- gss
- ifit
- iri
- ptsd
- ptsd_cor1
- ptsd_cor2
- ptsd_cor3
- ptsd_cor4
- rsa
- Sachs
- tas
- women_math
# These are functions that could be added to some of the topics above
# Currently parked here to allow pkgdown::build_site() to compile
- title: internal
contents:
- constrained_posterior
- gen_net
- impute_data
- posterior_predict
- precision
- predicted_probability
- print.BGGM
- prior_belief_ggm
- prior_belief_var
- select